
Rexroth IndraControl VCP 20

Industrial
Hydraulics

Electric Drives
and Controls

Linear Motion and
Assembly Technologies Pneumatics

Service
Automation

Mobile
Hydraulics

Rexroth Rho 4
BAPS3 Programming Instruction

1070072178
Edition 07

Software manual

 II Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Rexroth Rho 4
BAPS3 Programming Instruction

Software manual

DOK-RHO*4*-BAPSI*SOFTH-PR07-EN-P

The present manual informs about:

D The programming language BAPS3

Description Release
Date

Notes

DOK-RHO*4*-BAPSI*SOFTH-PR06-
EN-P

10.2003 Valid as of VO07

DOK-RHO*4*-BAPSI*SOFTH-PR07-
EN-P

01.2005 Valid as of VO08

E Bosch Rexroth AG, 1998 − 2005

Copying this document, giving it to others and the use or
communication of the contents thereof without express authority, are
forbidden. Offenders are liable for the payment of damages. All rights
are reserved in the event of the grant of a patent or the registration
of a utility model or design (DIN 34−1).

The specified data is for product description purposes only and
may not be deemed to be guaranteed unless expressly confirmed
in the contract. All rights are reserved with respect to the content
of this documentation and the availability of the product.

Bosch Rexroth AG
Postfach 11 62
D-64701 Erbach
Berliner Straße 25
D-64711 Erbach
Tel.: +49 (0) 60 62/78-0
Fax: +49 (0) 60 62/78-4 28
Abt.: BRC/ESH (KW)

Title

Type of Documentation

Document Typecode

Purpose of Documentation

Record of Revisions

Copyright

Validity

Published by

Electric Drives
and Controls

IIIBosch Rexroth AGRhoMotion1070072178 / 07

Overview of all manuals

Overview of all manuals

Manual Contents

Connection conditions Rho 4.0 2 System overviewConnection conditions Rho 4.0

3 Installation

4 Electrical connection

5 Interfaces

6 LED display

7 Maintenance and replacement

8 Order numbers

System description Rho 4.0 2 System overviewSystem description Rho 4.0

3 Structure of the rho4.0

4 PCLrho4.0

5 CAN-Bus peripheral unit

6 SERCOS interface

7 Software

8 File management

Connection conditions Rho4.1,
Rho 4.1/IPC300

2 System overviewConnection conditions Rho4.1,
Rho 4.1/IPC300

3 Security functions

4 Installation

5 Electrical connection

6 Interfaces

7 LED display

8 Maintenance and replacement

9 Software

10 Order numbers

Connection conditions
Rho 4.1/BT155, Rho

2 System overviewConnection conditions
Rho 4.1/BT155, Rho
4.1/BT155T, Rho 4.1/BT205

3 Security functions
4.1/BT155T, Rho 4.1/BT205

4 Installation

5 Electrical Connections

6 Interfaces

7 Display and Operating Controls

8 Maintenance and Replacemant

9 Software

10 Order numbers

System description Rho 4.1 2 Structure of the rho4.1System description Rho 4.1

3 PCL

4 CAN-Bus peripheral unit

5 SERCOS interface

IV Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Overview of all manuals

Manual Contents

6 Software

7 File management

8 Scope of the rho4.1 Software

Manual Contents

Control functions 2 Survey of special functionsControl functions

3 Accurate position switching

4 Setting the machine position

5 Calling operating system functions

6 Parameterization of the belt characte-
ristic

7 Selecting a point-file

8 Mirroring

9 Belt type

10 System date and time

11 System counter

12 WC main range

13 Setting the belt counter

14 Recording of reference path

15 Flying measurement (rho4.1 only)

16 MOVE_FILE

17 Setting the block preparation

18 Exception−Handling

19 Belt counter current value

20 Automatic velocity adjustment for PTP
movements

21 Belt-synchronous working area belt
kind 4

22 Current belt speed

23 Changing the belt simulation speed

24 General functions

25 Process-oriented functions

26 BAPS3 keywords

Machine parameters 2 General informationMachine parameters

3 Application of the machine parameters

4 General system parameters

5 Speeds

6 Positions

7 Kinematic parameters

Electric Drives
and Controls

VBosch Rexroth AGRhoMotion1070072178 / 07

Overview of all manuals

Manual Contents

8 Measuring system parameters

9 Belt parameters

10 Drive parameters Servodyn-GC

11 Drive parameter Servodyn-D

12 Table of parameters

Manual Contents

BAPS3 Programming manual 2 Program structureBAPS3 Programming manual

3 Constants

4 Variables

5 Program control

6 Value assignments and combinations

7 Functions

8 Movement statement

9 Write/read functions

10 BAPS3 keywords

BAPS3 Short description 2 Program structureBAPS3 Short description

3 Constants and variables

4 Program structure

5 Value assignments and combinations

6 Standard functions

7 Movements and speeds

8 Belt synchronous

9 Workspace limitation

10 Write/read functions

11 Special functions

12 Library functions

13 Fix files

14 BAPS3 keywords

Signal descriptions 2 rho4 interface descriptionSignal descriptions

3 Signal description of PCL inputs

4 Signal description of PCL outputs

Status messages
and warnings

2 rho4 status messagesStatus messages
and warnings

3 Warnings

4 CANopen error codes

ROPS4/Online 2 General informationROPS4/Online

3 Activation and functions of Online

4 The function key box

VI Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Overview of all manuals

Manual Contents

5 Function key assignment

6 The marker box

7 File ROPS4WIN.ini

8 Selection of a file

9 TCP/IP settings for ROPS4

Manual Contents

DLL library 2 Library functionsDLL library

3 Calling library functions in BAPS

4 Block structure of the rho4.1

5 Library server

6 Application development

7 rho4 library functions

8 Variable access per DLL

PHG2000 2 Hand-held programming unit
PHG2000

3 PHG2000 system variables

4 Selection of PHG functions

5 Info function of the PHG

6 Controlling the PHG2000 output

7 Define/Teach

8 SRCAN functions

9 File and User Memory Functions

10 File list

11 Process info

12 Restoring the PGH display

13 Variable assignment of PHG keys

14 Select point file and point name

15 BDT editor

Connection conditions
Rho 4.1/IPC 40.2

2 System OverviewConnection conditions
Rho 4.1/IPC 40.2

3 Security Functions

4 Installation

5 Eelectrical Connections

6 Interface Ports & Connectors

7 Display- and Operating Components

8 Maintenance and Replacement

9 Software

10 Ordering Informations

Electric Drives
and Controls

VIIBosch Rexroth AGRhoMotion1070072178 / 07

Overview of all manuals

Manual Contents

DDE-Server 2 IntroductionDDE-Server

3 Hardware and Software

4 Operation

5 Items of Server 4

6 Scope of function

VIII Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Overview of all manuals

Notes:

Electric Drives
and Controls

IXBosch Rexroth AGRhoMotion1070072178 / 07

Contents

Contents
page

1 Safety Instructions 1−1 .
1.1 Intended use 1−1 .
1.2 Qualified personnel 1−2 .
1.3 Safety markings on products 1−3 .
1.4 Safety instructions in this manual 1−4 .
1.5 Safety instructions for the described product 1−5
1.6 Documentation, software release and trademarks 1−7

2 Program structure 2−1 .
2.1 General information 2−1 .
2.2 Mode of compiler operation 2−2 .
2.3 Compiler statements 2−4 .
2.3.1 Kinematic definition 2−4 .
2.3.2 WC name definition 2−5 .
2.3.3 JC name definition 2−5 .
2.3.4 Kinematic-related statements and data 2−6
2.3.5 Inclusion of files 2−7 .
2.3.6 Selectable extension within the include statement 2−7
2.3.7 Process kind 2−8 .
2.3.8 Debug information 2−8 .
2.3.9 Compiler statement SER_IO_STOP 2−9
2.4 Main program structure 2−10 .
2.4.1 Declaration part 2−10 .
2.4.2 Statement part 2−11 .
2.4.3 Subroutine declaration 2−12 .
2.5 Program declaration 2−13 .
2.6 Main program call in the main program 2−14
2.7 Subroutine declaration 2−17 .
2.8 Program run 2−19 .

3 Constants 3−1 .
3.1 Constant declaration 3−1 .
3.2 Standard constants 3−2 .

4 Variables 4−1 .
4.1 Data types 4−2 .
4.1.1 Simple data types 4−2 .
4.1.2 Structured data types 4−3 .
4.1.3 User-defined types 4−5 .
4.2 Declaration of variables 4−9 .
4.3 Global variables 4−10 .

X Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Contents

4.4 Point variables 4−12 .
4.4.1 Identification of point variables 4−13 .
4.4.2 Points and point file pkt 4−13 .
4.4.3 Complete value assignment 4−14 .
4.4.4 Assignment of variables for individual components 4−14
4.5 Text variables 4−17 .
4.6 Array variables 4−18 .
4.7 Channels 4−22 .
4.7.1 Channel declaration 4−22 .
4.7.2 Data types 4−23 .
4.7.3 Programming 4−23 .

5 Program control 5−1 .
5.1 WAIT statement 5−1 .
5.2 PAUSE statement 5−8 .
5.3 HALT statement 5−8 .
5.4 Repeat statement 5−9 .
5.5 Jump statement 5−10 .
5.6 IF-THEN statement 5−12 .
5.7 CASE statement 5−17 .
5.8 Parallel processes 5−18 .
5.8.1 External processes 5−18 .
5.8.2 Internal processes 5−19 .
5.8.3 Semaphores 5−20 .
5.9 BREAK 5−21 .

6 Value assignments and combinations 6−1
6.1 Value assignments 6−1 .
6.2 Combinations 6−2 .
6.2.1 Arithmetic expressions 6−2 .
6.2.2 Comparison 6−5 .
6.2.3 Logic operations 6−5 .

7 Functions 7−1 .
7.1 Sine function 7−1 .
7.2 Cosine function 7−2 .
7.3 Arc tangent function 7−3 .
7.4 Square root function 7−4 .
7.5 Absolute value 7−4 .
7.6 TRUNC 7−5 .
7.7 ORD 7−5 .
7.8 CHR 7−5 .
7.9 ROUND 7−6 .
7.10 Coordinate transformation 7−6 .
7.11 End of file 7−7 .
7.12 Integration of PLC program modules 7−8
7.12.1 Standard subroutines and/or standard functions 7−8
7.12.2 Single activation of program modules 7−9
7.12.3 Cyclical activation of program modules 7−9
7.12.4 Extension of the START statement 7−10
7.12.5 Extension of the STOP statement 7−11 .

Electric Drives
and Controls

XIBosch Rexroth AGRhoMotion1070072178 / 07

Contents

7.13 CONDITION interface, process, system signal, file 7−13
7.14 ASSIGN 7−19 .
7.15 Conversion routine INT_ASC 7−20 .
7.16 Conversion routine ASC_INT 7−22 .
7.17 Call of rho4 library functions 7−23 .
7.18 rho4 special functions 7−25 .
7.19 Standard function ’sizeof’ 7−28 .
7.20 Workpiece coordinate system 7−30 .
7.20.1 General information 7−30 .
7.20.2 Name determination of coordinate systems 7−30
7.20.3 BAPS Syntax 7−32 .
7.20.4 System file WCSYST.DAT 7−34 .
7.20.5 WC system selection in a BAPS program 7−35
7.20.6 Machine parameter P313: WCSYS-ROB assignment 7−36 . . .
7.20.7 Library functions 7−38 .
7.20.8 Workpiece coordinate system in a BAPS program 7−43
7.20.9 Selection and function in manual mode 7−46
7.20.10 Examples for special workpiece coordinates 7−47

8 Movement statements 8−1 .
8.1 Direct movement statements 8−1 .
8.1.1 Movement instructions 8−2 .
8.1.2 Kinematic definition 8−7 .
8.1.3 Interpolation mode 8−7 .
8.1.4 Destinations 8−12 .
8.1.5 Speed, acceleration and time 8−12 .
8.2 Time definition, indirect speed programming 8−20
8.3 Statements influencing movement 8−22 .
8.3.1 Belt synchronization 8−22 .
8.3.2 Block transitions (slope mode) 8−25 .
8.3.3 Spatial passing 8−34 .

9 Write/read functions 9−1 .
9.1 Protocol selection for communication functions 9−2
9.2 BAPS instruction WRITE 9−3 .
9.2.1 Protocol 3964/R 9−3 .
9.3 Interfaces 9−8 .
9.3.1 Transferred data 9−8 .
9.4 BAPS instruction READ 9−10 .
9.4.1 Interfaces 9−10 .
9.4.2 Transferred data 9−14 .
9.5 Example READ/WRITE 9−16 .

XII Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Contents

9.6 File operations 9−19 .
9.6.1 dat file 9−20 .
9.6.2 .dat file declaration 9−21 .
9.6.3 File read statement 9−21 .
9.6.4 Selection of a value within the dat file 9−22
9.6.5 READ_BEGIN selection of a specific line 9−23
9.6.6 BAPS standard function END_OF_FILE 9−23
9.6.7 BAPS instruction WRITE 9−24 .
9.6.8 WRITE_BEGIN selection of a specific line 9−25
9.6.9 BAPS instruction WRITE_END 9−26 .
9.6.10 BAPS instruction CLOSE 9−27 .
9.6.11 Write, read BINARY files 9−27 .
9.7 Write/read in PLC and Windows applications 9−31

10 BAPS3 keywords 10−1 .

A Appendix A−1 .
A.1 Abbreviations A−1 .
A.2 Index A−2 .

Electric Drives
and Controls

1−1Bosch Rexroth AGRhoMotion1070072178 / 07

Safety Instructions

1 Safety Instructions
Please read this manual before you startup the rho4.
Store this manual in a place to which all users have access at any time.

1.1 Intended use

This instruction manual presents a comprehensive set of instructions
and information required for the standard operation of the described
products. The described products are used for the purpose of operating
with a robot control rho4.

The products described
D have been developed, manufactured, tested and documented in

compliance with the safety standards. These products normally pose
no danger to persons or property if they are used in accordance with
the handling stipulations and safety notes prescribed for their con-
figuration, mounting, and proper operation.

D comply with the requirements of
D the EMC Directives (89/336/EEC, 93/68/EEC and 93/44/EEC)
D the Low-Voltage Directive (73/23/EEC)
D the harmonized standards EN 50081-2 and EN 50082-2

D are designed for operation in industrial environments, i.e.
D no direct connection to public low-voltage power supply,
D connection to the medium- or high-voltage system via a trans-

former.
The following applies for application within a personal residence, in
business areas, on retail premises or in a small-industry setting:
D Installation in a control cabinet or housing with high shield attenu-

ation.
D Cables that exit the screened area must be provided with filtering

or screening measures.
D The user will be required to obtain a single operating license is-

sued by the appropriate national authority or approval body. In
Germany, this is the Federal Institute for Posts and Telecommuni-
cations, and/or its local branch offices.

. This is a Class A device. In a residential area, this device may cause
radio interference. In such case, the user may be required to intro-
duce suitable countermeasures, and to bear the cost of the same.

The faultless, safe functioning of the product requires proper transport,
storage, erection and installation as well as careful operation.

1−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Safety Instructions

1.2 Qualified personnel

The requirements as to qualified personnel depend on the qualification
profiles described by ZVEI (central association of the electrical industry)
and VDMA (association of German machine and plant builders) in:
Weiterbildung in der Automatisierungstechnik
edited by: ZVEI and VDMA
MaschinenbauVerlag
Postfach 71 08 64
D-60498 Frankfurt.

The present manual is designed for RC technicans. They need special
knowledge on handling and programming robots.

Interventions in the hardware and software of our products, unless de-
scribed otherwise in this manual, are reserved to specialized Rexroth
personnel.

Tampering with the hardware or software, ignoring warning signs at-
tached to the components, or non-compliance with the warning notes
given in this manual may result in serious bodily injury or damage to pro-
perty.

Only electrotechnicians as recognized under IEV 826-09-01 (modified)
who are familiar with the contents of this manual may install and service
the products described.

Such personnel are
D those who, being well trained and experienced in their field and famil-

iar with the relevant norms, are able to analyze the jobs being carried
out and recognize any hazards which may have arisen.

D those who have acquired the same amount of expert knowledge
through years of experience that would normally be acquired through
formal technical training.

With regard to the foregoing, please note our comprehensive range of
training courses. Please visit our website at
http://www.boschrexroth.com
for the latest information concerning training courses, teachware and
training systems. Personal information is available from our Didactic
Center Erbach,
Telephone: (+49) (0) 60 62 78-600.

Electric Drives
and Controls

1−3Bosch Rexroth AGRhoMotion1070072178 / 07

Safety Instructions

1.3 Safety markings on products

Warning of dangerous electrical voltage!

Warning of danger caused by batteries!

Electrostatically sensitive components!

Warning of hazardous light emissions
(optical fiber cable emissions)!

Disconnect mains power before opening!

Lug for connecting PE conductor only!

Functional earthing or low-noise earth only!

Connection of shield conductor only

1−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Safety Instructions

1.4 Safety instructions in this manual

DANGEROUS ELECTRICAL VOLTAGE
This symbol is used to warn of a dangerous electrical voltage. The
failure to observe the instructions in this manual in whole or in part may
result in personal injury.

DANGER
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in personal injury.

CAUTION
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in damage to equipment or data files.

. This symbol is used to draw the user’s attention to special circum-
stances.

L This symbol is used if user activities are required.

Electric Drives
and Controls

1−5Bosch Rexroth AGRhoMotion1070072178 / 07

Safety Instructions

1.5 Safety instructions for the described product

DANGER
Danger of life through inadequate EMERGENCY-STOP devices!
EMERGENCY-STOP devices must be active and within reach in all
system modes. Releasing an EMERGENCY-STOP device must not
result in an uncontrolled restart of the system!
First check the EMERGENCY-STOP circuit, then switch the sys-
tem on!

DANGER
Danger for persons and equipment!
Test every new program before starting up a system!

DANGER
Retrofits or modifications may adversely affect the safety of the
products described!
The consequences may include severe injury, damage to equip-
ment, or environmental hazards. Possible retrofits or modifica-
tions to the system using third-party equipment therefore have to
be approved by Rexroth.

DANGER
Do not look directly into the LEDs in the optical fiber connection.
Due to their high output, this may result in eye injuries.
When the inverter is switched on, do not look into the LED or the
open end of a short connected lead.

DANGEROUS ELECTRICAL VOLTAGE
Unless described otherwise, maintenance works must be per-
formed on inactive systems! The system must be protected
against unauthorized or accidental reclosing.

Measuring or test activities on the live system are reserved to
qualified electrical personnel!

1−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Safety Instructions

CAUTION
Danger to the module!
Do not insert or remove the module while the controller is
switched ON! This may destroy the module. Prior to inserting or
removing the module, switch OFF or remove the power supply mo-
dule of the controller, external power supply and signal voltage!

CAUTION
use only spare parts approved by Rexroth!

CAUTION
Danger to the module!
All ESD protection measures must be observed when using the
module! Prevent electrostatic discharges!

The following protective measures must be observed for modules and
components sensitive to electrostatic discharge (ESD)!
D Personnel responsible for storage, transport, and handling must have

training in ESD protection.
D ESD-sensitive components must be stored and transported in the

prescribed protective packaging.
D ESD-sensitive components may only be handled at special ESD-

workplaces.
D Personnel, working surfaces, as well as all equipment and tools

which may come into contact with ESD-sensitive components must
have the same potential (e.g. by grounding).

D Wear an approved grounding bracelet. The grounding bracelet must
be connected with the working surface through a cable with an inte-
grated 1 MW resistor.

D ESD-sensitive components may by no means come into contact with
chargeable objects, including most plastic materials.

D When ESD-sensitive components are installed in or removed from
equipment, the equipment must be de-energized.

Electric Drives
and Controls

1−7Bosch Rexroth AGRhoMotion1070072178 / 07

Safety Instructions

1.6 Documentation, software release and trademarks

Documentation

The present manual provides information about programming the rho4
with BAPS3.

Overview of available documentation Part no.

German English

Rho 4.0 Connectivity Manual 1070 072 364 1070 072 365

Rho 4.0 System description 1070 072 366 1070 072 367

Rho 4.1/IPC 40.2 Connectivity Manual R911308219 R911308220

Rho 4.1/BT155, Rho 4.1/BT155T, Rho
4.1/BT205 Connectivity manual

1070 072 362 1070 072 363

Rho 4.1, Rho 4.1/IPC300 Connectivity man-
ual

1070 072 360 1070 072 361

Control panels BF2xxT/BF3xxT, connection 1070 073 814 1070 073 824

Rho 4.1 System description 1070 072 434 1070 072 185

ROPS4/Online 1070 072 423 1070 072 180

BAPS plus 1070 072 422 1070 072 187

BAPS3 Short description 1070 072 412 1070 072 177

BAPS3 Programming manual 1070 072 413 1070 072 178

Control functions 1070 072 420 1070 072 179

Signal descriptions 1070 072 415 1070 072 182

Status messages and warnings 1070 072 417 1070 072 181

Machine parameters 1070 072 414 1070 072 175

PHG2000 1070 072 421 1070 072 183

DDE-Server 4 1070 072 433 1070 072 184

DLL-Library 1070 072 418 1070 072 176

Rho 4 available documentation on CD ROM 1070 086 145 1070 086 145

. In this manual the floppy disk drive always uses drive letter A:, and
the hard disk drive always uses drive letter C:.

Special keys or key combinations are shown enclosed in pointed
brackets:
D Named keys: e.g., <Enter>, <PgUp>,
D Key combinations (pressed simultaneously): e.g., <Ctrl> + <PgUp>

1−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Safety Instructions

Release

. This manual refers to the following versions:
Hardware version: rho4
Software release: ROPS4

Trademarks

All trademarks of software installed on Rexroth products upon delivery
are the property of the respective manufacturer.

Upon delivery, all installed software is copyright-protected. The software
may only be reproduced with the approval of Rexroth or in accordance
with the license agreement of the respective manufacturer.

MS-DOSr and Windowst are registered trademarks of Microsoft
Corporation.

PROFIBUSr is a registered trademark of the PROFIBUS Nutzerorga-
nisation e.V. (user organization).

MOBYr is a registered trademark of Siemens AG.

AS-Ir is a registered trademark of AS-International Association.

SERCOS interfacet is a registered trademark of Interessengemein-
schaft SERCOS interface e.V. (Joint VDW/ZVEI Working Committee).

INTERBUS-Sr is a registered trade mark of Phoenix Contact.

DeviceNetr is a registered trade mark (TM) of ODVA (Open DeviceNet
Vendor Association, Inc.).

Electric Drives
and Controls

2−1Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2 Program structure

2.1 General information

BAPS3 is an abbreviation of Bewegungs- and Ablauf Programmier-
Sprache, Version 3, which means Movement and Sequence Program-
ming Language, version 3, and is a task-oriented programming
language for programming the rho4 control family.

As a programming language for robot and handling systems, BAPS3 is
an extensive but easy-to-learn language. It allows a quick and mainte-
nance-friendly realization of user tasks.

The language instructions can be written in the corresponding national
language, currently in German and English.

In this document, the general syntax of each statement is given before
every detailed statement.

The following symbols are used for the purpose of description:

CAPITAL LETTERS means part of the language element, i. e. a BAPS
keyword, and must be written

{ } may be optionally specified several times

[] may be optionally specified once

2−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

2.2 Mode of compiler operation

The BAPS compiler is integrated in both the operating system of the rho4
control and the programming system ROPS4.

The qll file contains the source text of BAPS3 programs. The BAPS com-
piler generates the following files from the statements contained in the
*.qll source file.

ird file

This file contains the program code executed by the rho4 control and the
memory area required for the variables used in the program. This file is
generated only if the program has been compiled without errors.

. Memory area is also reserved in this file for point variables which
are not declared with DEF and to which a value is assigned in the
program.

pkt file

The memory area in this file is reserved for the point variables which are
declared in the program with DEF or which are not declared and to which
no value is assigned in the program.

sym file

This file contains information on the variable names used in the program
and is always required for testing BAPS3 programs.

err file

This file contains the errors detected during compilation of the BAPS3
program in plain text.

Source files

Programs are stored in files which are stored in the main memory of the
control or on a data medium of your programming systems. The program
files are identified with names to permit the location of the correct pro-
gram from among the large number of programs. These files are also re-
ferred to as source files and must be identified with the file label
(extension) qll.

The program name and the name of the file in which the program is sto-
red must be identical.

Electric Drives
and Controls

2−3Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

In the rho4 control, a distinction is made between main programs and
subroutines. Main programs are programs which exist as files and which
can be started as rho4 BAPS user process. It is possible to call other
main programs which exist in the control’s main memory from within a
main program. We then speak of external subroutines that must be de-
clared correspondingly in the declaration part.

Internal subroutines are part of the main program in which they are defi-
ned and can be called only from within this program.

2−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

2.3 Compiler statements

BAPS3 contains compiler statements. They are destined for the control
of the compiler and reduce the extent of typing. The compiler statement
always begins with two semicolons.

The following compiler statements exist:
;;INCLUDE name
;;PROCESS_KIND = PERMANENT
;;[kinematic_name .] INT = CIRCULAR | PTP | LINEAR
;;CONTROL= rho4
;;KINEMATICS: ({ integer_const = kinematic_variable | , })
;;KINEMATICS = kinematic_variable
;;kinematic_variable.(JC_NAMES | WC_NAMES) = { name || , }
;;SER_IO_STOP [+/−]
;;DEBUGINFO [+/−]

The compiler statement for the JC names and for the target control must
be placed in front of the first source symbol, i. e. before the program de-
claration.

2.3.1 Kinematic definition

The control can handle several kinematics simultaneously.

If more than one kinematic (robots, feeding units, etc.) is to be controlled
in a BAPS program, they have to be defined first.

Syntax:

;;KINEMATICS:(1=SR6,2=kin2) ;KINEMATICS:(kinematic number=kinematic name)

It is now possible to distinguish the kinematics in the program and it is
evident to which kinematic the instructions refer.

The kinematic definition must be made according to a control definition
(if available) and before the PROGRAM statement.

Example:

;;CONTROL=rho4

;;KINEMATICS:(1=sr6,2=feeder)

PROGRAM main

Electric Drives
and Controls

2−5Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.3.2 WC name definition

The world coordinate points contain the components for the position, the
orientation and possibly for the belt coordinate(s). The component na-
mes can be defined.

Syntax:

;;WC_NAMES=x_k,y_k,z_k,a_k ;WC_NAMES=WC_name,...

If several coordinates have to be controlled by a BAPS program, they
have to be preceded by the kinematic name.

Syntax:

;;kinematic name.WC_NAMES=x_k,y_k,z_k,a_k ;kinematic name.WC_NAMES=WC name,...

Example for WC name declarations

;;automat.WC_NAMES=x_k,y_k,z_k,u_k,v_k,w_k,b_k

;;sr6.WC_NAMES=x_k,y_k,z_k,a_k

. The WC name declaration must be in one line and must not be inter-
rupted by a carriage return.

2.3.3 JC name definition

The joint coordinate points contain the components for the individual
axes and possibly for the belt coordinate(s). The JC names can be defi-
ned.

Syntax:

;;JC_NAMES=a_1,a_2,a_3,a_4 ;JC_NAMES=JC name,...

If several coordinates have to be controlled by a BAPS program, they
have to be preceded by the kinematic name.

Syntax:

;;JC_NAMES=a_1,a_2,a_3,a_4 ;kinematic name.JC_NAMES=JC name, ...

Example for JC name declarations:

;;automat.JC_NAMES=a_1,a_2,a_3,a_4,a_5,a_6,bnd

;;sr6.JC_NAMES=a_1,a_2,a_3,a_4

2−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

. The JC name declaration must be in one line and must not be inter-
rupted by a carriage return.

2.3.4 Kinematic-related statements and data

If several kinematics are controlled by a BAPS program, a distinction has
to be made in the program as to which kinematic the statements or data
refer. This applies to the
D point variables
D movement instructions
D tool statements
D workspace limitations

The point variables are preceded by the kinematic name.

Syntax:

sr6.POINT:corner ;kinematicname.POINT

kinematicname.POINT ;kinematicname.JC_POINT

If no kinematic is indicated, the currently preselected kinematic is assi-
gned.

The movement instructions can contain the kinematic indication additio-
nally or the preselected kinematic is controlled, see chapter 8.

In the reference point statement, the kinematic name has to be entered
immediately after the REF_PNT key value.

Syntax:

REF_PNT sr(1,2,3,4) ;REF_PNT kinematicname(axisnumber)

The same applies analog to the TOOL and LIMIT_OFF, LIMIT_MIN and
LIMIT_MAX statement.

Syntax:

TOOL automat innergripper ;TOOL kinematicname toolname

LIMIT_OFF sr6 ;LIMIT_OFF kinematic name
 ;LIMIT_MIN kinematic name(parameter)
 ;LIMIT_MAX kinematicname(parameter)

Electric Drives
and Controls

2−7Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.3.5 Inclusion of files

With the compiler statement ;;INCLUDE ’filename’, parts of source pro-
grams can be included into the program.

Example:
;;INCLUDE baps ;baps.qll, file for the
 ;automatic inclusion of the
 ;declaration part during compilation

INPUT REAL: 1=grip_contact,4=measheight ;declaration inputs

INPUT: 11=gateswitch_1,15=li_barrier

OUTPUT REAL: 1=print,2=met_unit ;declaration outputs

OUTPUT: 7=alarm

The baps.qll file contains e. g. the declarations of your inputs and out-
puts. These are defined with regard to their
D file type
D channel number
D variable name of the signals

2.3.6 Selectable extension within the include statement

From the compiler version 3.0 on, the extension of include files can be
freely selected. If only the file name is indicated, the extension .qll will be
used for reasons of compatibility. If a file without extension is to be inclu-
ded, the file name has to be ended with a dot, see example for include
statement.

Syntax:
;;INCLUDE filename ;compiler statement INCLUDE

In the above syntax applies:
D filename: name of the file to be included during compilation.

Example for include statement:
;;INCLUDE head.inc

PROGRAM demo

;;INCLUDE constant ;The file constant.qll is included

;;INCLUDE types.INC ;The file types.INC is included

;;INCLUDE variable. ;The file variable. (without extension) is included

BEGIN

2−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

PROGRAM_END

2.3.7 Process kind

By means of the compiler statement ;;PROCESS_KIND = PERMA-
NENT, a process can be declared as permanent.

Example:

;;PROCESS_KIND=PERMANENT

PROGRAM tmp_cont

...

PROGRAM_END

This means that this process is not ended by a reset or by automatic/ma-
nual switching.

. Permanent processes must not contain any movement instruc-
tions. The compiler statement must precede the PROGRAM state-
ment.

2.3.8 Debug information

With the compiler statement ;;DEBUGINFO−, the creation of debug in-
formation to the Irdata code can be switched off for the comfortable test
operation. This is normally only reasonable for fully tested application
programs.

Since the information is then missing in the Irdata code, the Irdata code is
shorter and processed faster, but a test with the debugging system is
then no longer possible.

Syntax:

;;DEBUGINFO− ;Generation of debug information is switched off

Further restrictions with DEBUGINFO−
D No line numbers will be shown on the process display, mode 10.3 and

mode 7.3.2.
D Program errors possibly occurred will also be displayed without line

numbers.
With ;;DEBUGINFO+, the generation of debug information is switched
on again.

Electric Drives
and Controls

2−9Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.3.9 Compiler statement SER_IO_STOP

With this compiler statement it is possible to avoid the abort of a user pro-
gram in case of an interface error.

The statement is only permitted at the start of the program. It applies to
the whole program and may only appear once. If this compiler statement
is not used, an interface error will lead to a program break. Explaining
example see section 7.13.

Syntax:

;;SER_IO_STOP− ;No program break in case of error

;;SER_IO_STOP+ ;Program break in case of error

;;SER_IO_STOP ;Program break in case of error

2−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

2.4 Main program structure

Each main program consists of
D declaration part
D statement part and optionally
D subroutine declaration(s)

Main program

Declarations

Instructions

Subroutines

2.4.1 Declaration part

The declaration part is at the beginning of the main program. In the de-
claration part, the names are declared which occur in the main program.

This applies to:
D program head, the name of the main program
D external declaration, the names of the external main programs called

in the main program
D channel declaration, the names of the input and output channels used

in the program
D variable and constant declaration, the names of the variables and

constants which occur in the program

Electric Drives
and Controls

2−11Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

PROGRAM pattern

EXTERNAL: demo,help

INPUT: 1=force

OUTPUT: 9=rol_ba

REAL: weight, length

POINT: palette, slide

.

Constant
declaration

Variable de-
claration

Channel
declaration

External
declaration

Program
name

CONST: yellow = 0,

white = 1, blue = 4

The declaration of variables can optionally be introduced by the keyword
VAR.

REAL: weight, length

.

Constant
declaration

Variable de-
claration

CONST: yellow = 0,

white = 1, blue = 4

VAR:

INTEGER: number

The declaration part has to be separated from the statement part by the
keyword BEGIN.

. Undeclared variables are considered to be variables of the type
POINT or JC_POINT.

2.4.2 Statement part

In the statement part, the statements to be carried out are programmed.
These are for example:
D movement statements
D decelerations and halt
D main program calls
D subroutine calls
D program part repetitions
D program jumps
D arithmetical operations
D function calls

2−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

BEGIN

PROGRAM_END

The statement part is placed between the keywords BEGIN and PRO-
GRAM_END.

2.4.3 Subroutine declaration

At the end of the main program, the subroutines are listed, if provided.

Electric Drives
and Controls

2−13Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.5 Program declaration

A main program is identified at the start by the BAPS word PROGRAM
and its program name.

The program name consists of a maximum of eight characters. Letters,
digits and underlines are permitted.

. The first character must be a letter. Upper-case and lower-case let-
ters are deemed equivalent.

The program end is identified by the BAPS word PROGRAM_END or
SUB_END, if subroutines are listed.

. The program name and the file name must be identical.

Example:

A program is to be given the name ’demo’

PROGRAM demo

End of the program ’demo’

PROGRAM_END

PROGRAM demo

PROGRAM_END

BEGIN

Declarations

Statements

Main program begin

Main program end

File
demo.qll

2−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

2.6 Main program call in the main program

A main program can consist of several external individual main pro-
grams.

External declaration: The external main programs must be declared with
EXTERNAL at the beginning of the declaration part and be available in
the control as ird file.

External main programs can be optionally provided with transfer para-
meters. The number, order and data types must agree with the declara-
tion upon parameter transfer. All variables are permitted as parameters
of the types array and channels.

External main programs with transfer parameters cannot be started as
independent programs but only by a program call from a higher-order
main program.

It is then sufficient to specify to declared program name in order to call
external programs in the active main program.

PROGRAM demo

EXTERNAL: practice,course

practice

course

.

.

.

.

.

.

.

.

.

Declaration of
the main pro-
grams

Call of the main
program

Call of the main
program

Electric Drives
and Controls

2−15Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

. The main program and the external program to be called are compi-
led independently of each other. No check of the transferred para-
meters with respect to agreement with the declaration in the
external main program is thus possible at the time of compilation.
This is performed during the program run. The number, types, or-
der and nature (VALUE or addressing) of the transfer parameters
must correspond to the declaration of the called external main pro-
gram.

Programming

The program names of the external main programs are declared by the
statement EXTERNAL:.

Example:

EXTERNAL: drill,course

External declaration with parameter transfer

EXTERNAL: withpar(VALUE INTEGER: number)

The main program must be declared correspondingly

PROGRAM withpar(VALUE INTEGER: l)

Main program call in the main program

The control executes the active main program up to the external pro-
gram call.

This if followed by a jump to the start of the program drill.

The program drill is executed up to the HALT statement.

HALT results in a return to the main program demo.

The control continues the program run with the statement following the
call.

2−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

aktive main program external main program

PROGRAM demo

EXTERNAL: practice

practice

MOVE palette

.

.

.

.

.

.

PROGRAM practice

HALT

.

.

.

.

.

.

BEGIN BEGIN

PROGRAM_END

Electric Drives
and Controls

2−17Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.7 Subroutine declaration

If the same work steps have to be performed at different points in the pro-
gram, it is possible to combine these steps to subroutines. Use of sub-
routine techniques saves on memory space and also increases the
clarity of your program. Variables which are defined in the main program,
i. e. global variables, can also be processed in the subroutine. Variables
which are declared in the subroutine, i. e. local variables, can only be
processed in the subroutine. A transfer to the main program does not
take place. The subroutine declarations are located after the main pro-
gram after the PROGRAM_END statement.

Identification

A subroutine is identified at the start by the word SUBROUTINE and the
subroutine name. The subroutine name may consist of a maximum of
twelve characters. Letters and numbers are permitted.

. The first character must be a letter. Upper-case and lower-case let-
ters are deemed equivalent.

The subroutine is ended by the BAPS keyword SUB_END.

Programming

A subroutine contains statements for the gripper and is to be given the
namen ’gripper’:

HALT

PROGRAM_END

SUBROUTINE gripper

BEGIN

SUB_END

.

.

.

.

Subroutine start

Subroutine end

2−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

. RETURN can be used several times within a subroutine, e. g. with
program jumps and conditional statements.

SUBROUTINE gripper

SUB_END

.

.

INPUT : 106 = finished

IF finished THEN RETURN

gripper

.

BEGIN

PROGRAM_END

Subroutine call

If the subroutine return is recognizable from the program structure, e. g.
at the subroutine end, the compiler generates the instruction RETURN
automatically.

Subroutine call

It is sufficient to specify the declared subroutine name for the subroutine
call, in the example ’gripper’.

Electric Drives
and Controls

2−19Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

2.8 Program run

The control executes the main program up to a subroutine call.

This is followed by a jump to the start of the called subroutine. The sub-
routine is executed up to RETURN.

The instruction RETURN results in a return to the main program.

The control continues the program run with the statement following the
subroutine call.

BEGIN

gripper

HALT

PROGRAM_END

SUBROUTINE gripper

SUB_END

.

.

.

.

It is possible to transfer variables or values with a subroutine call. The
variables must be correspondingly declared in the subroutine declara-
tion for this purpose.

Example:

gripper (1.5,6.0) ;value assignment

SUBROUTINE grip(VALUE REAL: force1,force2) ;in the subroutine call, the variable
 ;force1 is assigned the value 1.5 and
 ;variable force2 the value 6.0

The value is transferred if the declaration is made with the preceding
BAPS instruction VALUE, otherwise the address of the variable is trans-
ferred, i. e. the variable must be declared in the main program.

If the declaration is preceded by VALUE, the calling program transfers
information to the called subroutine. However, the called subroutine
does not return any information in this way.

If the address is transferred, on the other hand, the assignments in the
subroutine also act on this variable after return to the calling program.

2−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

Example:

;;INCLUDE head ;Include compiler statements, such as control type,
 ;DEBUGINFO+ etc. from the file head into the program

program demo ;Test program for subroutine with parameter transfer

REAL: x ;Variable declaration

BEGIN

 x=5

 WRITE PHG,x

 anix(X) ;Call of the SUBROUTINE anix

 WRITE PHG,x

 awas(X) ;Call of the SUBROUTINE awas

 WRITE PHG,x

 HALT

PROGRAM_END

SUBROUTINE awas(REAL: aw) ;Subroutine declaration awas. Transfer of the value and
 ;the variable. The subroutine offsets the variable and
 ;then returns it to the main program. The subroutine
 ;outputs the number series 5, 10, 5, 10, 10.

BEGIN

 aw=aw*2

 WRITE PHG,aw

 RETURN

SUB_END

SUBROUTINE anix(VALUE REAL: aw) ;Subroutine declaration anix. Transfer of value,
 ;the variable x is unchanged. The subroutine
 ;processes the variable. The variable in the main
 ;program remains unchanged after leaving the
 ;subroutine.

BEGIN

 aw=aw*2

 WRITE PHG,aw

 RETURN

SUB_END

Electric Drives
and Controls

2−21Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

Nesting

Additional main program calls and subroutine calls can be programmed
within called main programs or subroutines. In these cases, we speak of
’nesting’.

Program examples for subroutine nesting:
D A call of the subroutine ’stacker’ is programmed in the main program.
D In the subroutine ’stacker’ a further subroutine call is programmed,

the subroutine ’gripper’.
D The control executes the main program up to the call ’stacker’.
D A jump then takes place to the subroutine ’stacker’.
D The control executes the subroutine ’stacker’ up to the call ’gripper’.
D A jump then takes place to the next subroutine ’gripper’.
D The subroutine ’gripper’ is executed completely in the example

shown here.

The control jumps back to the subroutine ’stacker’ after the instruction
RETURN, continues the program run up to RETURN and then finally
jumps back to the main program.

. When programs and subroutines are nested, it must be ensured
that no endless loops are created.

Any nesting depth is possible. The depth is limited only by the available
memory place.

. The memory size can be defined by the machine parameter P16,
see manual ’Machine parameters’.

2−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

Example 1

SUBROUTINE gripper

RETURN

.

SUBROUTINE stacker

gripper

RETURN

.

stacker

HALT

.

.

.

Main program

Subroutine

Subroutine

Electric Drives
and Controls

2−23Bosch Rexroth AGRhoMotion1070072178 / 07

Program structure

Example 2

Program part repetitions can also be nested; a second repetition is pro-
grammed within a program part repetition.

The program is executed as follows:
D The control executes the program part once up to the start of the se-

cond program part.
D The second program part is repeated three times.
D The control then continues the program run up to the end of the first

program part; the first program part has thus been executed once.
D The control then jumps back to the start of the first program part for

the second run.
D The whole sequence is repeated a second time.

Any nesting depth is possible. The depth is limited only by the available
memory place.

REPEAT 3 TIMES

REPEAT_END

REPEAT_END

.

.

.

.

.

.

First pro-
gram part

Second
program
part

REPEAT 2 TIMES

REPEAT 2 TIMES

REPEAT 3 TIMES

REPEAT_END

.

.

.

.

.

.

REPEAT_END

2−24 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program structure

Notes:

Electric Drives
and Controls

3−1Bosch Rexroth AGRhoMotion1070072178 / 07

Constants

3 Constants

3.1 Constant declaration

Within a program, numeric values, e.g. the number of repetitions, cha-
racter sequences or characters can be indicated in form of constants.

The value of a constant can also be specified by a computing rule. The
constants are to be defined with the constant declaration before the va-
riables of a program.

Example of a constant declaration:

CONST: red=1,yellow=2*red,green=2*yellow,lines=4,
 columns=20,limit_value=2.5*7.25 ;Constant declaration

INTEGER: color, l_index, c_index ;Variable declaration

REAL: meas_value

ARRAY[lines .. columns] CHAR: phg_display

IF meas_value>limit_value THEN ;Program part

3−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Constants

3.2 Standard constants

In BAPS3 standard constants are available. These constants are contai-
ned in the language scope and need therefore not be declared.

CLS
WRITE PHG,CLS ;By the output of constant CLS the PHG display is cleared.

VERSION
IF VERSION <3.00 THEN
WRITE PHG, ’old version of compiler’ ;Via the constant VERSION, the compiler

;version can be determined. The constant
;is of the type REAL.

Electric Drives
and Controls

4−1Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

4 Variables
Numeric values, e. g. coordinate values for positions or the number of
repetitions, can be replaced by variables in a program.

A variable reserves a memory location under its name.

A numeric value can be assigned to this memory location any number of
times. The control stores the last-assigned numeric value in each case.

If a variable name occurs during the program run, the control replaces
the variable by the value stored under its name at this point of time.

Every variable has a name. Different variables must have different na-
mes. The names should be chosen so that it is possible to recognize the
meaning of these variables wherever this is possible, e. g. position de-
signations: instead of ’b1’, it is better to use ’bore_1’ or arithmetic varia-
bles: instead of ’i’ , it is better to use ’counter’ etc.

The name consists of a maximum of 12 characters.

It is permitted to use letters, numbers and the ’underline’. Upper-case
and lower-case letters are deemed equivalent.

. The first character must be a letter, blanks are not permitted. The
point variables of the data type JC_POINT form an exception.
These variables must start with the character @.

4−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

4.1 Data types

The data type of a variable determines its value range and the permitted
assignment and arithmetic operations. The permitted operations are
described in the section ’Value assignment’.

A distinction must be made for data types between simple data types and
composed or structured data types.

Simple data types
D INTEGER
D REAL
D BINARY
D CHAR

Structured data types
D POINT
D JC_POINT
D BELT
D TEXT
D ARRAY
D WC_FRAME
D SEMAPHORE
D FILE

A structured data type consists of two or more simple data types.

4.1.1 Simple data types

INTEGER

Only integral values, i. e. numbers without decimal point, positive or ne-
gative, must be assigned to variables of the type INTEGER.

Value range −231 to +(231−1)

REAL

Only real numbers, i. e. numbers with decimal point, positive or nega-
tive, must be assigned to variables of the type REAL.

Value range: approx. −1037 to −10-38, real zero, 10-38 to 1037

. Value inputs for variables of the type REAL must be made with a de-
cimal point and not with a comma.

Electric Drives
and Controls

4−3Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

BINARY

Only the digits 0 or 1 may be assigned to variables of the type BINARY.

. No integral arithmetic operations may be performed with variables
of the type BINARY.

The digits 0 and 1 do not represent any values in the conventional sense.
They describe two defined states, e. g.:

Variable designation 0 1

switch off on

question no yes

bowl empty full

filled false true

Variables of the type BINARY are signals of the binary input and output
channels.

CHAR

Only ASCII characters in accordance with DIN 66003 may be asigned to
variables of the type CHAR.

4.1.2 Structured data types

POINT

Only positions in world coordinates may be assigned to variables of the
type POINT.

The individual coordinate values of a position of the type POINT must be
of the type REAL.

The kinematic must be specified for point variable declarations where
appropriate, e. g. ’robot_1.corner’.

If no kinematic is specified, the valid kinematic is the first-specified kine-
matic in the kinematic declaration, kinematic number one or the kinema-
tic last selected by the compiler statement ;;KINEMATICS, e. g.
;;KINEMATICS = robot_1.

JC_POINT

Only positions in joint coordinates may be assigned to variables of the
type JC_POINT.

4−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

The individual coordinate values of a position of the type JC_POINT
must be of the type REAL.

. Variable names of the type JC_POINT must start with the character
@.

Variables of the types POINT and JC_POINT are also called point varia-
bles.

The kinematic must be specified in point variable declarations where ap-
propriate, e. g. robot_2.@corner. The number of components depends
on the number of axes of the specified kinematic.

If no kinematic is specified, the valid kinematic is the first-specified kine-
matic in the kinematic declaration, kinematic number one or the kinema-
tic last selected by the compiler statement ;;KINEMATICS, e. g.
;;KINEMATICS = robot_2.

TEXT

Only texts, consisting of up to 80 ASCII characters, may be assigned to
variables of the type TEXT. The individual characters can be addressed
directly like array elements with an index.

TEXT: char_string ;Declaration of text variables

char_string[1]=’A’ ;Assignment of individual components

char_string[2]=’B’

char_string=’This is ASCII text’ ;Assignment of a text

ARRAY

It is possible to combine variables of the same type in an array. These
variables all have the same name and differ only with respect to the in-
dex. For this reason, these variables are also called indexed variables.

Syntax:

ARRAY[([±]integer_constant)..([±]integer_constant)] <Typ>: variablename

Example:

ARRAY[−10..10] INTEGER: variablename

SEMAPHORE

Syntax:

SEMAPHORE: sema_name

Electric Drives
and Controls

4−5Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

Variables of the type SEMAPHORE are used as parameters in the EXC-
LUSIVE statement.

FILE

Syntax:

FILE: cad_dat

A file name is defined with data type FILE. This is used as a parameter for
access with WRITE or READ.

4.1.3 User-defined types

Through the expansion of the declaration part of a BAPS program by the
type definition part it is possible for the user to declare in BAPS his own
types.

It is thus possible to asign new names to any data type. This applies to
both the standard types, e. g. BINARY, INTEGER, and the structured ty-
pes formed from them, e. g. arrays. This leads to a clearer structure of
BAPS programs.

Example:

PROGRAM types ;type definition part

TYPE:
tmatrix=ARRAY[0..7] ARRAY[0..7] INTEGER ;2-dimensional array under a new name
 ;new name for INTEGER (not used
 ;here)

myinteger=INTEGER ;Variable definition part

VAR:
ARRAY [0..7] ARRAY [0..7] INTEGER: matrixone
 tmatrix: matrixtwo

myinteger:integervar

BEGIN

 initold(matrixone)

 initnew(matrixtwo)

PROGRAM_END

SUBROUTINE initold(ARRAY[0..7] ARRAY[0..7] INTEGER: matrix) ;long writing variable
 ;matrix initialization

BEGIN

SUB_END

4−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

SUBROUTINE initnew(tmatrix: matrix) ;short, clear writing
 ;variable matrix
 ;initialization

BEGIN

SUB_END

Record types

A further improvement of the clarity and structure of programs is achie-
ved by using record types.

A record is an accumulation of one or several variables, the so-called
components, possibly of different data types, which are for a comfortable
handling combined under one single name. In PASCAL these record ty-
pes are also known as ’record’, in C they are called ’struct’.

The traditional example of a record is an entry into a file for payroll ac-
counting: A ’staff member’ is written as a block of attributes, such as for
example name, address, social security number, salary category etc.
Some of these attributes can be record types themselves. A name has
several components, first and last names, exactly as an address or a
rate class.

Records are useful to organize complicated data, especially in large pro-
grams. In many situations they permit the processing of a group of asso-
ciated variables as a unit and not separately.

The name appearing in the type declaration on the left side of the assign-
ment character, before the reserved word RECORD, represents the
complete record and can in the following be used as an abbreviation for
the detailed declaration.

Variables mentioned in a record are called components in BAPS. A com-
ponent can have the same name as an ordinary variable without creating
a conflict. They can also be distinguished from the context.

A component is exclusively accessed through the name of the record.
The component name is in this case separated from the record name by
a dot. If the component represents a record itself, its components are
equally separated by a dot, see example of record types.

When using record variables within the WRITE or READ statement, the
following has to be observed:
D General dat files, e. g. PHG, V24_1, FILE:dana, etc. record variables

can only be read or written by components.
D Binary files, e. g. PLC, WIN_1, BNR_FILE: BinFile etc. record varia-

bles can be read or written completely or by components.

Electric Drives
and Controls

4−7Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

Example record types:

PROGRAM records

Type: ;Type definition part

tname=RECORD

 TEXT: firstname,lastname,title

 RECORD_END

taddress=RECORD

 TEXT: street

 INTEGER: ZIP_code

 TEXT: town

 RECORD_END

tstaffmember=RECORD

 tname: name

 taddress: address

 TEXT: ss_number

 BINARY: salary

 RECORD_END

tstaffmember: worker ;Variable declaration part declaration
 ;of a staff member

BEGIN

 ..

 worker.ss_nummer=0815 ;Access to the component

 worker.name.firstname=’Rainer’ ;Access to the component of a

 worker.name.title=’Dr.’ ;component

PROGRAM_END

4−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

Example record statements

Syntax:

BEGIN

 {statements}

END

By means of the record statement, several statements can be combined:

BEGIN

 statement

 statement

END

A statement sequence can be at the place of a statement:

INPUT: 1=valve_1,2=valve_2

IF ready THEN

 BEGIN

 valve_1=1

 END

ELSE

 BEGIN

 valve_2=1

 END

Electric Drives
and Controls

4−9Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

4.2 Declaration of variables

Syntax:

[DEF] Type: [channel no.=]name{ ,[channel no.=]name}

DEF is possible only for point variables (POINT and JC_POINT) and
channel number only for the types INPUT, OUTPUT or BELT.

The control must know which values or characters a variable may pos-
sess before execution of an statement with variables.

For this reason, every variable used in the program must be declared,
i. e. it is necessary to define the data type of the variable.

. Variables of the type POINT and JC_POINT need not be declared,
i. e. the compiler interprets undeclared variables as point variables
and reserves memory for these in der point file pkt.

. JC_point variables start with the character @. They are assigned to
the last kinematic set by a compiler statement.

. BAPS3 standard variables (e. g. VFACTOR, AFACTOR) must not be
used as user variables.

Programming

The declaration consists of the data type and the variable name to be
assigned. The data type is separated from the variable name by a colon.
Several variable names of the same type are separated by commas.

Example:

INTEGER: counter

REAL: divisor,xvalue,yvalue

TEXT: message_1,message_2

4−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

4.3 Global variables

Global variables permit the simple data exchange between several inde-
pendent BAPS user programs (processes). The basic idea is to combine
programs working with the same global variable in a program group. Wit-
hin this group, a program can export data, while the other programs of
this group may only import these data. On the control, as many of these
program groups as desired can be created (only limited by the available
memory space).

Program example:

PROGRAM exp_var ;Exporting program
 ;Declaration part in the exporting program
PUBLIC DEF POINT: start_pos ;Global data

PUBLIC INTEGER: index ;Global variables are declared by adopting the

PUBLIC SEMAPHORE: write_prot ;keyword GLOBAL in the type declaration
 ;of these variables. The data range for these
 ;variables is reserved in the IRD file.
 ;Teachpoints, e. g. identified by the keyword
 ;DEF, are stored in the PNT file.

REAL: mvalue ;Local data

BEGIN ;BAPS statements

 EXCLUSIVE write_prot

 start_pos=POS

 index=5

 EXCLUSIVE_END

 .
 . ;Additional statements
.

PROGRAM_END

Electric Drives
and Controls

4−11Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

PROGRAM imp_var ;Importing program

 ;Declaration part in the importing program
 ;Global data
EXTERNAL exp_var: start_pos ;The variables can be accessed from other BAPS

EXTERNAL exp_var: index ;programs, if the variables are declared with

EXTERNAL exp_var: write_prot ;EXTERNAL und the name of the exporting
 ;program

POINT: end_pos ;Local data

BEGIN ;BAPS statements

 EXCLUSIVE write_prot

 REPEAT index TIMES

 MOVE TO start_pos

 MOVE TO end_pos

 REPEAT_END

 EXCLUSIVE_END

PROGRAM_END

Restrictions

When using global data, the following restrictions have to be taken into
account:
D The exporting program of a program group must be compiled before

the importing programs of this group. This is necessary because of
the type verification by the compiler. The user must ensure that each
importing program is of a more recent date than the exporting pro-
gram. If this is not the case, an error message or a warning will be put
out at the program start.

D In a program it is not possible to import and export data at the same
time.

D Only data from one program may be imported.
D Global data may only be exported or imported in the declaration part

of the main program but not in subroutines.
D To ensure a transfer of a complete data block without a break, the ac-

cess to the variables must be protected by the EXCLUSIVE state-
ment. The consistency, i. e. the validity of data of simple standard
types, such as BINARY, INTEGER, REAL and CHAR, is ensured by
the operating system.

4−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

4.4 Point variables

Point variables are composed, structured data types which consist of
components.

The components are the coordinates or the axes of the point variables.

In addition to the complete value assignment, you can also assign to the
point variables values by components, e. g. corner.z_k = height

You specify the component designation with the compiler statements

;;JC_NAMES = JC_name, ... and

;;kinematicname.JC_NAMES = JC_name, ...

as well as

;;WC_NAMES = WC_name, ... and

;;kinematicname.WC_NAMES = WC_name, ...

Example declaration of point variables:

DEF POINT: corner

ARRAY[1..4] POINT: point_array

JC_POINT: @between_pnt

DEF ARRAY[1..8] JC_POINT: @mk_pnt_array

S8.POINT: startpoint

DEF robot1.JC_POINT: @placing

Electric Drives
and Controls

4−13Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

4.4.1 Identification of point variables

Names of point variables of the type POINT start with a letter.

Names of point variables of the type JC_POINT start with a special cha-
racter @.

Permitted operations with point variables

JC_POINT POINT REAL

JC_POINT +

−

+ JC (...)

− JC (...)

*

/

POINT + WC (...)

− WC (...)

+

−

*

/

REAL * * +

−

*

/

4.4.2 Points and point file pkt

While all other variables have to be declared, point variables need not be
declared explicitely.

The BAPS3.0 compiler interprets all undeclared variables as POINT or
JC_POINT and reserves the corresponding space for them in the point
file.

All points declared with DEF and all points to which no value has been
assigned at any location in the program, are stored in a point file with the
identification pnt.

The points that are transmitted as parameters to subroutines, Spc_Fct
and rho-Fct, do not appear in the point file. That applies to the transfer of
individual point components (e.g. ’Pos.X_C’).

With the function ’Define’ you can assign to these points direct values by
means of ’Teach-In’ or the input of values.

. Values can only be assigned to points from the pnt file during the
program run, i. e. overwrite the content of the point file, if they have
been declared with DEF declared.

4−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

. Undeclared points to which, however, values have been assigned
in the program, are not stored in the point file but in the ird file. No
values can be assigned to these points with the ’Define’ function.

4.4.3 Complete value assignment

In case of complete value assignments, values will be assigned to all
coordinates of the point variable. Only point variables of one data type
may be within one assignment.

. Exception: Mixed operations with the standard functions JC or WC.

Assignment of numeric values

Example:

position=(50,0,100,0,15,10)

@edge=@(45,5.8,70,10,5.8,0)

4.4.4 Assignment of variables for individual components

Example:

hole=(xvalue,yvalue,zvalue,0,0,0)

@seat=@(50,95.8,height,40,38,0)

hole.z_c=height

The variables xvalue, yvalue, zvalue and height are of the type REAL.

Assignment by addition and subtraction

The total of the point variables ’position’ and the constant has been assi-
gned to the point variables ’shelf’.

Constants consist of the enumeration of their coordinates put into brak-
kets. Constants can contrary to variables not be changed during the pro-
gram run.

In case of addition and subtraction, the individual components are added
resp. subtracted each.

Example:

shelf=position+(10,−30,100,5,0,0,0)

Electric Drives
and Controls

4−15Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

Assignment with multiplication and division

By the multiplication and division with numeric values or variables of the
type REAL, you can change any coordinate value of point variables or
constants.

Multiplication:

pos_1=(10,10,10,0,0,0)

pos_2=pos_1*2

Each individual component of pos_1 is doubled by the multiplication with
2 and is allocated to the new point variable pos_2; pos_2 then has the
coordinates: pos_2 = (20, 20, 20, 0, 0, 0).

Division:
div=4.0

pos_3=pos_2/div

pos_3 then has the coordinates: pos_3 = (5, 5, 5, 0, 0, 0)

Mixed operation with point variables

With the standard functions JC and WC you can execute mixed opera-
tions with point variables of the type POINT and JC_POINT.

If the result of the arithmetic operations is to be assigned to a point varia-
ble of the type POINT, the operation has to be made in world coordinates.

If the result of the arithmetic operations is to be assigned to a point varia-
ble of the type JC_POINT, the operation has to be made in joint coordina-
tes.

Example:

@p3=@(0,100,0,0)

@p1=JC(p2)+@p3

The control converts the world coordinates of point p2 into joint coordina-
tes, adding them to the coordinates of @p3. The result is assigned to the
point variable @p1.

Reading of the actual position

With the standard point variables POS (world coordinates) and @POS
(joint coordinates) you can assign point variables to the current position
of the robot each during the program run.

act_pos=POS

@joint_pos=@POS

4−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

Programming

The standard point variables are located at the right-hand side of the as-
signment. It is also possible to separate the assignment by components.

cpos.c_3=POS.c_3

xvalue=POS.c_1

Assignment by components

In case of point variables you can assign new values to individual coordi-
nates.

Vice versa it is also possible to assign coordinate values of point varia-
bles to variables of the type REAL.

The JC names are defined in the machine parameters or by compiler
statement.

In the following examples, the coordinates of a position in world coordi-
nates are named k1, k2, k3, etc. (c = coordinates), the coordinates of a
position in joint coordinates a2, a3, etc. (a = axis).

The coordinate name is annexed to the name of the point variable with a
dot.

Example:

position.c3=100 ;Value 100 is assigned to the coordinate c3

zvalue=anchor.c3 ;The third coordinate value of the point variable anchor
 ;is assigned to the variable zvalue

@pal_pos.a4=radius ;The value of the variable radius of the type REAL is
 ;assigned to coordinate a4, the position described in
 ;joint coordinates

Electric Drives
and Controls

4−17Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

4.5 Text variables

Within a program it is possible to assign texts to text variables.

Example:

TEXT: message,note ;The variable message and note are of the type TEXT

Text assignment

The text to be assigned must be placed within inverted commas and may
not have more than a maximal of 80 characters. The text must be in one
line.

Example:

message=’gripper is defective’

note=’change pallet’

Use of variables

Text variables can be put out in the program onto an output channel, e. g.
PHG, with the BAPS instructions WRITE and be read with READ.

Example:

WRITE PHG,note

READ PHG,entry

. The variable itself must not be placed within inverted comma, such
as e. g. WRITE ’note’. The control puts out otherwise the word
’note’ instead of the declared text.

4−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

4.6 Array variables

Variables of the same type can be combined to arrays.

Arrays consist of a freely selectable number of array places being desi-
gnated with ascending numbers. By specifying a number (index), a va-
riable can be assigned to each array place.

Variables of one array have all the same name and differ only in their in-
dex. The index is identical with the number of the assigned array place.

All types of variables can be stored in arrays.

Array declaration

The array declaration consists of:
D declaration instruction ARRAY
D array limits (place numbers)
D declaration of array variables

The array limits are indicated in angular brackets and formed from the
first place number (first index = lower limit) and the last place number
(last index = upper limit).

Examples:

ARRAY[1..9] POINT: placing_pos ;onedimensional arrays

ARRAY[0..10] TEXT: message

ARRAY[-10..10] INTEGER: number_pos

ARRAY[1..9] ARRAY[5..10] POINT: picking_pos ;multidimensional array

The lower limit has to be separated from the upper limit by two dots, e. g.
[3..8]

The upper limit of the array must not be smaller than the lower limit.

The index is of the type INTEGER.

Example:

ARRAY[1..5] POINT: hole ;Declaration of an array with 5 places for the
 ;point variable hole, the first index is to be 1

Electric Drives
and Controls

4−19Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

Value assignment

Each array variable is addressed by its name and index put in angular
brackets.

For the index you can also insert a variable or an expression of the type
INTEGER. A value assignment is then possible via the REPEAT state-
ment or through the other program loops.

Example:

ARRAY[-5..0] INTEGER: number

number[-5]=1 ;The variable number on the array place −5 has the value 1,

number[-4]=2 ;the variable number on the array place −4 has the value 2,

number[-3]=4 ;etc.

number[-2]=8

number[-1]=16

number[0]=32

 ;Example REPEAT statement
ARRAY[-5..0] INTEGER: number ;Array with 6 places

INTEGER: i,k ;Index i and value k

i=-5 ;First index

k=1 ;First value

REPEAT 6 TIMES

 number[i]=k ;Value assignment

 i=i+1 ;Index increase

 k=k*2 ;Value change
 ;Any assignment

REPEAT_END

4−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

 ;Example program loop
ARRAY[-5..0] INTEGER: number ;Array declaration

INTEGER: i,k ;Index i and value k

i=-5 ;First index

k=1 ;First value

mark: ;Jump mark

number[i]=k ;Value assignment

i=i+1 ;Index increase

k=k*2 ;Value change
 ;Any assignment

IF i<=0 THEN JUMP mark ;Conditional assignment for program loop

Determination of pallet positions:

;;INCLUDE head ;Required compiler statements
 ;are included

PROGRAM palpos ;Determination of pallet positions

INTEGER: line,column,c,l,k ;Declarations

ARRAY[1..12] POINT: palpos ;The pallet has four lines and three
 ;columns, i. e. 12 positions

BEGIN ;Program start

 dx=(30,0,0,0,0) ;The spacing of the positions to each other

 dy=(0,20,0,0,0) ;is specified in the incremental dimension
 ;under dx and dy

 line=4

 column=3

 c=0

 l=0

 k=0

 mark_1:

 k=k+1 ;statements, point assignments

 palpos[k]=pos+c*dx+l*dy ;The position pos is a teach point,
 ;i. e. it is defined by being approached
 ;and stored, it is the first position
 ;palpos[1]. It is therefore placed in the
 ;initialization part c=0 and l=0

Electric Drives
and Controls

4−21Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

 c=c+1 ;Increase of column number

 IF c<column THEN JUMP mark_1 ;The next position palpos[2] is placed in
 ELSE c=0 ;the adjacent column. The column number c
 ;must thus be increased.
 ;At the same time, the column number c
 ;must not exceed the total number of
 ;columns. If c remains smaller than
 ;column, the control jumps to the
 ;jump mark mark_1, if the index k is
 ;increased by 1 and assigns the value
 ;pos+1*dx+0*dy to the position palpos[2].
 ;If c exceeds the column, the control
 ;assigns the value zero to variable c and
 ;increases the line number.

 l=l+1 ;Increase of line number

 IF l<line THEN JUMP mark_1 ;The increase of the line number is analog
 ;to the increase of the column number. In
 ;the IF-THEN statement the ELSE
 ;statement is missing; the control
 ;continues with the move statement of the
 ;condition l < line is not met

 ;;INT=LINEAR

 V=1000

 AFACTOR=9.999

 k=0

 REPEAT 12 TIMES

 k=k+1

 MOVE TO palpops[k] ;Move statements

 MOVE_REL with V=36 EXACT (0,0,−20,0,0)

 WAIT 2

 MOVE_REL with V=59 EXACT (0,0,20,0,0)

 REPEAT_END

 MOVE_REL CIRCULAR((−50,−50,100,0,0),(−100,−100,0,0,0))

 HALT

PROGRAM_END

4−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

4.7 Channels

BAPS3 permits reading or writing of any digital or analog inputs or out-
puts present in the hardware configuration.

The respective input or output is addressed by specifying a channel
number in the declaration of input or output variables.

The following channel numbers are available for rho4

Channel number Type and meaning

1 to 199 BINARY inputs/outputs

201 to 216 REAL inputs/outputs

401 to 416 INTEGER inputs/outputs

501 to 516 Belt channels

4.7.1 Channel declaration

In the channel declaration, the data type BINARY, INTEGER or REAL
and the variable name of the signal to be transferred are assigned to a
channel number. It is necessary to define whether input or output signals
are involved.

Example: Signals of the type BINARY

INPUT:

 1=gate_switch1,

 2=met_unit,

 5=li_barrier

OUTPUT:

 7=alarm

Please refer to the examples under item 4.7.3.

Electric Drives
and Controls

4−23Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

4.7.2 Data types

Depending on your control version, user channels are available to you
by which you can transfer data of the following types.

BINARY: Interrogation and setting to state 0 or 1.

The control possesses 199 binary inputs and outputs.

INTEGER: Interrogation and setting integral numeric values in the
range between 0 and 255. The control treats these nu-
meric values as data of the type INTEGER.

The control possesses 16 inputs and outputs of the type
INTEGER. Please also refer to the manuals Machine
parameters, Status messages and warnings.

REAL: Interrogation and setting to analog voltage values. The
control treats these voltages as data of the type REAL.

BELT: Belt channels serve the purpose of synchronization with
conveyor belts or acquisition of values by means of
standard position measuring systems.

Belt channels are (only) inputs of the type REAL and
may be located only on the right side of an assignment.

Any measuring system input of the rho4 can be used as
a hardware input. The parameterization takes place via
machine parameter 501.

4.7.3 Programming

The individual channel assignments must be separated by a comma.
There must be no comma after the last assignment.

If the data type is not specified, the control automatically assumes BI-
NARY.

Example: Signals of the type INTEGER

INPUT INTEGER:

 401=grip_force,

 403=meas_height

OUTPUT INTEGER:

 401=pressure

4−24 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

Example: Signals of the type REAL

INPUT REAL:

 201=torque,

 206=force

OUTPUT REAL:

 203=speed

Interrogation of channels and signals

The interrogation and evaluation of the channels or their assigned na-
mes takes place in conditions. Only 1 interrogation is possible with a
MOVE UNTIL instruction.

Example:

WAIT UNTIL gate_switch=1

IF grip_force>=26 THEN...

WAIT UNTIL meas_height>=212

MOVE LINEAR UNTIL meas_height>=200 TO pos ; ok

Example:
MOVE UNTIL grip_force=100 AND meas_height=200 ; wrong

TO pallet

Wrong is:
MOVE UNTIL grip_force=100 AND meas_height=200 TO pallet

The compiler would interpret this instruction as follows:
MOVE UNTIL grip_force= ((100 AND meas_height) =200) TO pallet

It is not necessary to specify ’=1’ when interrogating binary signals for 1.
The control then automatically interrogates for 1.

Example:

IF met_unit THEN ...

. Output signals cannot be interrogated. Interrogation is only possi-
ble for input signals.

Electric Drives
and Controls

4−25Bosch Rexroth AGRhoMotion1070072178 / 07

Variables

Setting of signals

Signals are set in value assignments, see section 6.2.1.

Example:

print=75

. Input signals cannot be set. Setting is possible only for output si-
gnals.

. Binary signals can be combined with AND, OR, NOT.

Example:

IF NOT gate_switch1 AND li_barrier THEN alarm=1

Exceptions are the WAIT UNTIL condition and MOVE UNTIL condition.
No combinations are permitted here.

4−26 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Variables

Notes:

Electric Drives
and Controls

5−1Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

5 Program control

5.1 WAIT statement

Syntax:

WAIT expression

The WAIT statement allows programming delays and interruptions in the
program execution.

Dwell time

A time can be specified directly if the robot is to dwell at a position for a
specific time.

Dwell time for WAIT

Unit of mea-
sure:

Second

Input range: 0.01 to 3200 s

Programming: Time input takes place at a numeric value following the
statement WAIT, e. g. WAIT 8.5

5−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

Program example: The robot transports a vessel to the metering unit to
have it filled.

Syntax Description

MOVE TO met_unit

dosierer

WAIT 8.5
The filling time is ap-
prox. 8.5 seconds

MOVE TO pallet
It then transports the ves-
sel to a pallet

Î Î

palette

Waiting until condition occurs

Syntax:

WAIT UNTIL variable rel_operator expression [max_time=expression [ERROR
statement]]

Rel_operator: =, < >, <=, >=, <, >

If the robot is to wait at a position for a condition to occur, the condition
can be specified together with the WAIT statement.

Program execution will then be interrupted, until the condition is satis-
fied.

. The conditions can be set only by means of input channel varia-
bles, also see section 4.7.3.

Programming: the condition is appended to the WAIT statement with the
word UNTIL, e. g.:

WAIT UNTIL pal_empty=1

Electric Drives
and Controls

5−3Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

. If the condition consists of several input channels, the WAIT state-
ment must be divided into several steps.

Example:

WAIT UNTIL signal=1

WAIT UNTIL light=1

MOVE TO pallet

What would be wrong:
WAIT UNTIL signal=1 AND light=1

The compiler would interpret this instruction as follows:
WAITE UNTIL signal= ((1 AND light) =1)

5−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

Program example: The robot transports a workpiece to a pallet changer.

Syntax Description

MOVE TO pallet

ÎÎÎ

ÎÎ
ÎÎ

palette

WAIT UNTIL pal_empty=1
It waits until the pallet is empty. The pallet changer
then puts the signal pal_empty = 1 when an empty
pallet has arrived at the change position.

ÎÎ
ÎÎ

ÎÎ

Pallet mo-

vement

Light barrier

pal_empty=0

put_down The deposit operation is programmed in a sub-
routine put_down.

ÎÎ

ÎÎ
ÎÎ

pal_empty=1

Electric Drives
and Controls

5−5Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

Maximum wait time

Designation max_time

Unit of measure Second

Input range 0.5 to 32000

A maximum wait time can be defined In conjunction with a WAIT condi-
tion.

Program execution will then be interrupted, until the condition is satisfied
or the specified maximum time is exceeded.

An error statement can be programmed with the maximum wait time.
The control executes the error statement if the maximum wait time is ex-
ceeded.

Programming: The maximum wait time is specified with the BAPS in-
struction MAX_TIME. This is programmed after the wait condition.

Example:

WAIT UNTIL sig=1 max_time=60

The error statement is programmed after max_time.

Example:

WAIT UNTIL sig=1 max_time=60 ERROR PAUSE

Sequence example

A container is filled with a liquid. A sensor measures the weight of the
container. The sensor outputs the signal ’weight = 1’. The filling system
then closes the valve and the robot transports the container away. The
average filling time is approx. 25 s.

The container may remain under the filling device for a maximum of 45 s
in order to ensure that the production sequence is not put at risk.

Syntax Description

WAIT UNTIL weight=1 max_time=45
ERROR JUMP f_end

.

.
f_end: Error processing

5−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

rho

Clock

Sensor

Case 1
D The container is completely filled. The sensor issues the signal

’weight = 1’ to the rho.
D The robot transports the container away.
D The max_time has not been reached.

rho

Sensor

weight=1

Clock

Case 2
D The filling system ist empty, and the container is not completely filled.
D The max_time is reached. The program is continued at f_end. The

program f_end instructs the robot to isolate the partially filled contai-
ner.

Electric Drives
and Controls

5−7Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

rho

Sensor

weight=0

Clock

5−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

5.2 PAUSE statement

The program execution can be stopped with the PAUSE statement.

It is then necessary to issue the external start signal to continue the pro-
gram run, see manual Status messages and warnings.

Programming: The PAUSE statement consists of the BAPS instruction
PAUSE.

It is recommended to program a text output or to set an output before the
PAUSE instruction in order to inform the operator about the program
flow.

5.3 HALT statement

The HALT statement ends the execution of an statement string in the
main program.

The control recognizes that the program has been terminated during the
program run by way of the HALT instruction.

. In case of called external subroutines, HALT results in a return to
the calling active main program.

Programming

The HALT instruction is entered before the subroutine declaration or be-
fore the program end. In the case of branched programs, the instruction
is entered several times within a program.

If the program halt is evident from the program structure, e. g. in the case
of the BAPS statement PROGRAM_END, the control generates the
HALT instruction automatically during compilation.

BEGIN

PROGRAM demo

HALT

PROGRAM END

SUBROUTINE
grip

SUB_END

.

.

.

Electric Drives
and Controls

5−9Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

5.4 Repeat statement

Syntax:

REPEAT [expression TIMES]

 statement(s)

REPEAT_END

A program part can be executed several times with a repeat statement.

In this case, we speak of a program part repetition.

.

.

.

.

.

.

.

.

.

.

Start of the
program part
to be repeated

End of the
program part

REPEAT 8 TIMES

REPEAT END

The program part is identified at the start by the repeat statement RE-
PEAT number TIMES.

Numbers, variables or expressions of the type INTEGER, see section
4.1, can be entered for the number of repetitions.

The loop is not executed if number=0 or negative.

The program part is ended by the BAPS instruction REPEAT_END.

Programming: A certain program part is to be repeated eight times, i. e.
the BAPS statement is REPEAT 8 TIMES. The program part is ended
with REPEAT_END.

5−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

5.5 Jump statement

Labels can be set in main programs and subroutines to which it is possi-
ble to jump with a jump statement. Forward and back jumps are possible.

backward

forward

JUMP

The jump statement consists of the BAPS instruction JUMP and the
name of the set jump label. The labels (jump destinations) are identified
with names.

The name consists of a maximum of twelve characters.

. The first character must be a letter. As special character only the
underline ’_’ is permitted. Upper-case and lower-case letters are
equivalent.

Setting of a jump label must be identified with a colon ’:’ in order to distin-
guish it from subroutine calls.

. A specific jump label must be set only once! Any number of diffe-
rently named jump labels is possible.

. Jumps from the main program into a subroutine and vice versa are
not permitted!

JUMP

JUMP

MAIN PROGRAM SUBROUTINE

SUB_END

Electric Drives
and Controls

5−11Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

. Jumps to program part repetitions are also not permitted.

MAIN PROGRAM

REPEAT

REPEAT_END

yes!

no!

JUMP

Jumps from program part repetitions, on the other hand, are permitted.

Programming

A jump to the jump label ’table’ (forward) is to take place in a program.

Syntax:

JUMP table ;Jump statement for jump to jump label ’table’

table: ;Setting of a jump label with the name ’table’

The control executes the program up to the jump statement, here JUMP
table.

This is followed by a jump to the jump label table.

The control then continues the program from this label.

.

.

.

.

.

.

.

.

JUMP table

table:

5−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

5.6 IF-THEN statement

Syntax:

IF condition THEN statement

 [ELSE statement]

The remaining execution of the program can be made to depend on a
condition at freely selectable locations within a main program or subrou-
tine. The statement dependent on the condition is therefore also referred
to as conditional statement.

Condition is understood to mean an expression of the type BINARY.

The condition is satisfied if the statement is correct, i. e. the variable ac-
tually posesses the value or has a value within the specified value range.

The condition is not satisfied if the statement is false.

Example for conditions

channel = 1

i = 15

sig1 AND sig2

word = j

force > 115.0

torque >= thresholdval

. Conditions must be put in brackets if necessary when combined
with AND, OR, NOT, see section 6.2.3, in order to obtain the desired
priorities of the condition operation.

Electric Drives
and Controls

5−13Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

Programming

The conditional statement has the following form:

IF condition THEN statement 1

 ELSE statement 2

IF the condition is satisfied, THEN the control executes statement 1,
ELSE, if the condition is not satisfied, the control executes statement 2.

IF condition

NO

ELSE statement 2

THEN statement 1

YES

Possible statements are, for example:
D Program calls (main program or subroutine calls)
D Jump statements (JUMP)
D Pause statements (PAUSE)
D Halt statements (HALT)
D Delays (WAIT)
D Repetitions (REPEAT)
D Movement instructions (MOVE, MOVE_REL)
D Conditional statements (IF...THEN...ELSE)
D etc.

If no jump is programmed in the THEN statement or ELSE statement, the
control continues the program run with the program steps following the
conditional statement.

The ELSE statement may be omitted. In this case, the control also conti-
nues the program run with the program steps following the conditional
statement.

Example

The robot is to search for a pallet loaded with a workpiece on a shelf,
weight approx. 200 kg. It has a sensor in its lifting device for this purpose
which informs the control about the weight of the pallet.

When it has found the workpiece, it is to transport it to the machine.

Starting position: The robot is positioned before the top pallet.

5−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

Syntax:

next:

 in ;call of subroutine ’in’: travel in and
 ;lift up pallet.

IF weight>=180.0

 THEN MOVE TO machine

 ELSE JUMP search

WRITE ’Workpiece found’

PAUSE

search:

 down ;SUBROUTINE deposit, travel out and travel down

 JUMP next

next:

 in ;SUBROUTINE move in and lift up

ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎÎ

É É

É É
É É

ÏÏÏ

ÏÏÏ
ÏÏÏ

ÎÎÎÎÎ
ÎÎÎÎÎ
É É ÎÎÎ

ÎÎÎ 200

Sensor

IF weight>=180.0 ;Evaluation of signal < 180.0 kg, e. g. only
 ;weight of an empty pallet

 THEN MOVE TO machine

 ELSE JUMP search ;Control decides for ELSE statement
 ;Program jump to jump label ’search:’

ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

É
É

É
É

É É
É É

ÏÏÏ

ÏÏÏ
ÏÏÏ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎ
ÎÎÎ

160
É É

Decision for ELSE statement

Signal to rho4.1

Electric Drives
and Controls

5−15Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

search:

 down ;Call of subroutine ’down’: lowering of pallet,
 ;travel out and lower.

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

É
É
ÉÉ
ÉÉ

ÉÉÉ
ÉÉÉ

ÏÏ

ÏÏ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ

200

ÉÉÉ

JUMP next ;Program jump to jump label ’next:’

next:

 in ;Call of subroutine ’in’: travel in, and lift up pallet.

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

ÉÉÉ
ÉÉÉ

ÏÏ
ÏÏ

ÏÏ
ÏÏ

ÎÎÎÎ
ÎÎÎ 200

É
É
ÉÉ
ÉÉ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

É
É
ÉÉ
ÉÉÏÏ

ÏÏ

ÏÏ
ÏÏ

ÎÎÎÎÎÎÎ
ÎÎÎ

É
É
ÉÉ
ÉÉ

ÉÉÉ 200

Decision for THEN statement

Signal to rho4.1

5−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

IF weight>=180.0 ;Evaluation of signal 200 kg. Control decides for
 ;THEN statement

 THEN MOVE TO machine ;Travels to position ’machine’

 ELSE JUMP search

ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎÎ

É É

É É
ÏÏÏ

ÏÏÏÎÎÎÎÎÎÎÎ
ÎÎÎ

É
É

É
É

É É

Î
Î

machine

WRITE ’Workpiece found and delivered’ ;Output of text: ’Workpiece found and
 ;delivered’ on monitor.

PAUSE

Î
ÎÏÏÏ

Workpiece

found and

delivered

Electric Drives
and Controls

5−17Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

5.7 CASE statement

By using the branching statement CASE, a selection from several alter-
natives can be realized. Nested IF − THEN inquiries can be avoided and
the execution time of the program can be reduced.

Syntax:

CASE selection_expression

 EQUAL: statement

 EQUAL: statement

 DEFAULT: statement

CASE_END

Admissible types for the selection expression are BINARY, INTEGER,
CHAR and TEXT.

The constants of the constant list must be compatible with the selection
expression. A constant may be used only once within the branching sta-
tement.

The DEFAULT part can be specified if desired. If the DEFAULT part is
missing in the branching statement, no runtime error will be put out du-
ring the execution of the program. This is also valid if none of the state-
ments applies.

Example:

PROGRAM case_ex

INTEGER: amount, offset ;Declarations

BEGIN ;Program start

 amount=0

 offset=0

 READ amount

 CASE amount

 EQUAL 9,10: offset=0

 EQUAL 11,12: offset=1

 EQUAL 13: offset=2

 DEFAULT offset=5

 CASE_END

PROGRAM_END

5−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

5.8 Parallel processes

The control rho4 can execute several user processes (programs) simul-
taneously. This feature is also known as multitasking capability.

The parallel processes are either defined within the same program (in-
ternal processes) or are each defined in a separate program (external
processes).

5.8.1 External processes

An external process can be started or stopped by a program. Further
synchronization does not take place.

In other words, the external process may still be active even if the pro-
gram which has started the external process and has not stopped it
again is terminated. The process may be stopped, for example, by a third
process.

The external processes are included in the EXTERNAL statement.

EXTERNAL: temp_control

START temp_control

STOP temp_control

.

.

.

.

.

.

Electric Drives
and Controls

5−19Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

Starting and stopping external processes

External processes can be started either by:
D selection on the PHG2000
D program selection via the file Exprog.dat and corresponding interface

signals
D BAPS statement START from a running BAPS process

The START statement can be extended by priority information

Syntax:

START temp_control PRIO=100 ;START process name PRIO = number

The process name is the name of the ird file and must be declared with
EXTERNAL.

The priority code must lie between 100 (highest priority) and 150 (lowest
priority). 100 is taken as the default value if no priority is specified.

An external process is stopped with the STOP statement.

Syntax:

STOP temp ;STOP process name

The process name is the name of the ird file and must be declared with
EXTERNAL.

5.8.2 Internal processes

Internal processes are executed simultaneously within a program. In
contrast to external processes, synchronization takes place here. The
main program is started after a PARALLEL_END statement only after all
parallel processes have been completed.

Internal processes are defined as follows.

Syntax:

PARALLEL

 MOVE sr8 TO corner ;Process statements

ALSO

 MOVE_REL feeder EXACT (0,100) ;Process statements

PARALLEL_END

5−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

5.8.3 Semaphores

If parallel processes access common resources, e. g. output devices,
assignment can be managed by means of an EXCLUSIVE statement.

Syntax:

EXCLUSIVE sema_V24_1 ;EXCLUSIVE statement semaphore name

 WRITE V24_1, n ;Statement

EXCLUSIVE_END ;End of the EXCLUSIVE statement

The semaphore names are declared with the semaphore statement.

Syntax:

SEMAPHORE: sema_V24_1 ;SEMAPHORE: semaphore name

Electric Drives
and Controls

5−21Bosch Rexroth AGRhoMotion1070072178 / 07

Program control

5.9 BREAK

A BAPS program normally needs the CPU until no further blocks have to
be prepared or until the clock calls the CPU for the position control. 11
blocks or the number of blocks specified via the special function block
preparation are prepared.

System User
task
1

Clock Clock

User
task 2

 Break

System

The user can force a break of the active user process at any location by
using the BAPS function BREAK. The CPU is then be made available to
other system processes of equal or higher priority during the same clock
time. The interrupted process is appended to the end of the waiting
queue of all processes of the same priority. After all processes of the
same priority, which are waiting for the assignment of the CPU, have
been active once, Round Robin-Algorithm, the interrupted process will
be reactivated. Processes of higher priority can also be activated several
times before the interrupted process is reactivated.

The BAPS function BREAK is realized as BAPS standard subroutine wi-
thout parameters.

Syntax:

PROGRAM ex_1 ;Program name

INPUT: 1=i1 ;Declarations

OUTPUT: 1=o1

BEGIN

 loop:

 IF i1=1

 THEN o1=1

 BREAK

 JUMP loop

PROGRAM_END

5−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Program control

The example process enables the CPU after each loop. The remaining
time until the next clock interrupt is made available to other processes.

Electric Drives
and Controls

6−1Bosch Rexroth AGRhoMotion1070072178 / 07

Value assignments and combinations

6 Value assignments and combinations

6.1 Value assignments

Value assignments are used to assign values to variables for speed and
acceleration during the course of a program. This also applies to stan-
dard variables. The assigned value must be of the same data type as the
variable.

Value assignment for general variables is described in the following sec-
tion. Value assignment for positions can be found in the section 4.4.

Programming

Syntax:

variable=expression

Assignment takes place via the = symbol. The name of the variable to
which a value is assigned must be stated on the left side of the assign-
ment. An expression is located on the right side.

It is possible to enter
D numeric values (constants)
D variables
D arithmetic expressions
D standard functions
for the expression.

The sign + can be omitted.

The sign − is positioned directly before the variables or constants. The
negative expression must be put in brackets if two operators follow each
other directly.

All components must be multiplied by −1 if you want to negate all compo-
nents of a variable of the type POINT or JC_POINT. −1.0 must also be
put in brackets in this case.

Syntax:

counter=1 ;Variable and numeric value

xvalue=yvalue+2.5 ;Variable and arithmetic expression

distance=SIN(alpha) ;Variable and standard function

value=−value ;Variable of the type REAL and negation

d=d*(−2.0) ;Variable and negative expression

corner=(−1.0)*corner ;Variable of the type POINT and negation

6−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Value assignments and combinations

6.2 Combinations

6.2.1 Arithmetic expressions

Arithmetic expressions are combinations of
D numeric values and/or
D variables and/or
D standard functions and/or
D further arithmetic expressions.

The type of combination is defined by the operator. The rho4 knows five
arithmetic operators:

+ Addition e. g. k = 1 + 5

− Subtraction e. g. value = weight-1

* Multiplication e. g. length = width x 2

/ Division e. g. height_new = height/2.0

MOD Modulo calculation only for the data type INTEGER e. g. rest
= number MOD divisor

. The characters + and − can also be used as signs for variables and
numeric values.

. Variable and numeric values with a sign must be put in brackets so
that two operators do not follow each other directly.

There must be no sign on the left side of an assignment.

The operations addition and subtraction can be performed with variables
and numeric values (constants) of the type INTEGER, REAL, POINT
and JC_POINT, while the operations multiplication and division can be
performed with variables of the type INTEGER and REAL.

Variables and numeric values of the type REAL can also be used for mul-
tiplication and division of point variables, see section 4.4.

The operators *, / and MOD are executed before + and −

Calculation takes place from left to right within these classes.

Electric Drives
and Controls

6−3Bosch Rexroth AGRhoMotion1070072178 / 07

Value assignments and combinations

Example:

number = * and / before + and −

from left to right

In addition, expressions which belong together can be put in brackets.

Example:

* and / before + and −

Bracket firstnumber =

Modulo function

Modulo function: value1 MOD value2

The modulo function, data type INTEGER, calculates the integral re-
mainder from division of value1 by value2. Value1, value2 and the result
are of the type INTEGER.

Example:

Determination of the column of a pallet after specifying the position num-
ber and column number.

6−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Value assignments and combinations

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 19

20 21 22 23 24

Col.
0

18

Line 0

Col.
1

Col.
2

Col.
3

Col.
4

Line 1

Line 2

Line 3

Line 4

The pallet has 5 columns (0, 1, 2, 3, 4). Which column and which row
does position 13 occupy?

The position number must be substituted for value1 and the column
number for value2.

column=13 MOD 5 ;Calculation: 13/5 = 2 remainder 3. The remainder specifies the
 ;column, column 3 is thus the sought answer

line=13 MOD 5 ;Calculation: 13/5 = 2 remainder 3. The ratio indicates the line,
 ;line 2 is thus the sought answer

When calling the column, the modulo function determines the column in
which the sought position is located by means of the value of the remain-
der, in the example = 3.

When calling the line, the modulo function determines the line in which
the sought position is located by means of the value of the result, in the
example = 2.

Electric Drives
and Controls

6−5Bosch Rexroth AGRhoMotion1070072178 / 07

Value assignments and combinations

6.2.2 Comparison

The control inquires values and states in conditions, e. g. ’UNTIL condi-
tion’ or ’IF condition’. This interrogation takes place via comparisons.

Programming

The following characters are available

= equal to, e. g.: p = 1

<> not equal to, e. g.: p <>1

> greater than, e. g.: p > 1

>= greater than or equal to, e. g.: p >= 1

< less than, e. g.: p < 1

<= less than or equal to, e. g.: p <= 1

. Variables of the type POINT, JC_POINT and Record−Variables can
be inquired only with respect to = (equal to) or <> (not equal to).

6.2.3 Logic operations

The control checks conditions with respect to their truth value, see also
section 6.2.2 and section 5.6. Conditions can thus only have one of two
values.

Value 1 for true and value 0 for false.

This also applies to variables of the type BINARY.

These variables can also only ever have one of the two values, 0 or 1.

Combination of conditions

Often, the program sequence may depend on several conditions simul-
taneously.

. Variables and expressions (conditions) of the type BINARY can be
combined with the logic operations AND, OR and NOT.

6−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Value assignments and combinations

Combinations of two conditions cond_1 and cond_2 with AND
Truth values

cond_1 cond_2 cond_1 AND cond_2

1 1 1

1 0 0

0 1 0

0 0 0

Combinations of two conditions cond_1 and cond_2 with OR
Truth values

cond_1 cond_2 cond_1 OR cond_2

1 1 1

1 0 1

0 1 1

0 0 0

Negation of conditions
The truth content of conditions and variables of the type BINARY can be
negated with the word NOT.

Example:
Condition cond_1 is true, thus: (cond_1) = 1

If the word NOT is placed before the condition cond_1, then the follo-
wing is true for the truth content of NOT cond_1: (NOT cond_1) = 0

or

The condition cond_2 is false, thus (cond_2) = 0

then the following is true for the inverse function NOT: (NOT cond_2)
= 1

Programmig of combinations of several conditions

Results of comparative operations are always of the data type BINARY.
If several conditions are combined with each other, the following order of
operators must be observed:.

1. NOT
2. *, /, MOD, AND
3. +, −, OR
4. =, < >, >, >=, <, <=
Example:
Interrogation of numeric values of the variables i and j of the type REAL

Electric Drives
and Controls

6−7Bosch Rexroth AGRhoMotion1070072178 / 07

Value assignments and combinations

IF i = 10 AND j = 50 THEN...

In this example, the control first processes the expression ’10 AND j’. Ho-
wever, ’10 AND j’ represents a type conflict for the control, because the
constant 10 is of the TYPE REAL and not of the data type BINARY.

Brackets are used to define the order for processing expressions.

IF (i = 10) AND (j = 50) THEN...

6−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Value assignments and combinations

Notes:

Electric Drives
and Controls

7−1Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7 Functions

7.1 Sine function

The sine function, data type REAL, establishes the mathematical relati-
onship between an angle and the side lengths in a right-angle triangle.

a

sina +
opposite leg
hypothenuse

sina + a
c

a

b

c

Programming

The angle a must be specified in radian measure ’rad’. The number is of
the type REAL.

rad + a p
180°

p + 3.14;

The radian is specified after SIN in brackets.

Syntax:

avalue=c*SIN(rad)

. The designation avalue was chosen instead of only ’a’ because ’A’
has already been allocated as a reserved name for acceleration.

7−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.2 Cosine function

The cosine function, data type REAL, establishes the mathematical rela-
tionship between an angle and the side lengths in a right-angle triangle.

a

cosa +
adjacent leg
hypothenuse

cosa + b
c

a

b

c

Programming see Sine function.

Syntax:

b=c*COS(rad)

Electric Drives
and Controls

7−3Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.3 Arc tangent function

The arc tangent function, data type REAL, determines the angle in a
right-angle triangle by specification of the side length.

The arc tangent function is the inverse of the tangent function and is defi-
ned as follows:

a

tana +
opposite leg
adjacent leg

tana + a
b

a

b

c

The inverse of the tangent function is then

a + atan a
b

The angle is available as a radian value and can be converted.

a + rad * 180°p

Syntax:

alpha=ATAN(avalue/b)

. The designation avalue was chosen instead of only ’a’ because ’A’
has already been allocated as a reserved name for acceleration.

7−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.4 Square root function

The root function, data type REAL, determines the value of the square
root of an expression.

Calculation of the length c in a right-angle triangle.

a

b

c

Pythagorean theorem:

a2) b2 + c2 or c + a2) b2�

Syntax:

c=SQRT(avalue*avalue+b*b)

. The designation avalue was chosen instead of only ’a’ because ’A’
has already been allocated as a reserved name for acceleration.

7.5 Absolute value

Syntax:

ABS(argument)

The result supplied by the function is the absolute value of the transfer-
red argument. The argument may be of the type REAL or INTEGER. The
result is of the same type as the argument.

Example:

deviation=ABS(delta)

Electric Drives
and Controls

7−5Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.6 TRUNC

Syntax:

TRUNC(argument)

The function transforms the argument of the type REAL into a value of
the type INTEGER by truncation. In case of a positive argument, the re-
sult obtained is the largest integral number less than or equal to the argu-
ment, e. g. 3.7 becomes 3.

In case of a negative argument, the result obtained is the smallest inte-
gral number greater than or equal to the argument, e. g. −3.7 becomes
−3.

7.7 ORD

Syntax:

ORD(char_var)

This function supplies the INTEGER value of variables of the TYPE
CHAR

Example:

char_num=ORD(asc_char)

char_num=ORD(’i’)

7.8 CHR

Syntax:

CHR(integer)

This function supplies a value of the TYPE CHAR corresponding to the
calculation integer MOD 256.

Example:

asc_char=CHR(34)

7−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.9 ROUND

Syntax:

ROUND(argument)

The function transforms an argument of the type REAL into a value of the
type INTEGER.

Rounding takes place to the integral number closest to the argument. In
the case of arguments which lie exactly between two neighboring inte-
gral numbers (e. g. 0.5, 1.5), rounding always takes place to the even
integral number, i. e. 1.5 is rounded to 2 and 6.5 is rounded to 6.

Example:

value_3=ROUND(7.81) ;Value_3 is assigned to 8

value_4=ROUND(−5.43) ;Value_4 is assigned to −5

7.10 Coordinate transformation

Syntax:

WC(@jc_point)

JC(wc_point)

Using the standard functions JC and WC, it is possible to calculate both
with POINT and JC_POINT variables in an assignment.

WC transforms the joint coordinates into world coordinates e. g.
position = WC(@position)

JC transforms the world coordinates into joint coordinates e. g.
@corner = JC(corner)

WC and JC always supply values from the main area if joint or world
coordinates could be ambiguous.

Electric Drives
and Controls

7−7Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.11 End of file

Syntax:

END_OF_FILE(argument)

This function allows interrogation of whether the end of the file has been
reached when reading a .dat file. The argument is a variable of the type
FILE.

The function supplies the value 1 (true) if the end of the file has been re-
ached and the value 0 (false) if the end of the file has not been reached.

Example 1:

IF END_OF_FILE(dat_values) ;Use of the function in a conditional statement

 THEN statements

 ELSE statements

Example 2:

EOF=END_OF_FILE(dat_values) ;Use of the function in an assignment

7−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.12 Integration of PLC program modules

The rho4 offers the possibility to activate program modules in the PLC
from out of BAPS. Various standard subroutines have been designed for
this purpose. The START, STOP and standard function ’status’ can be
expanded to achieve a flexible control of the time behavior of the pro-
gram modules.

7.12.1 Standard subroutines and/or standard functions

PLC_process

The standard subroutine PLC_process permits the call of PLC program
modules. It contains a parameter which specifies the number of the desi-
red PLC program module.

PLC_time

The standard subroutine PLC_time permits the cyclical call of PLC pro-
gram modules with a fixed time raster. It contains a parameter which
specifies the number of the desired PLC program module.

. Since the subroutine PLC_process (PLC_time) is a BAPS standard
subroutine there is no need for declaring it by the user; it can sim-
ply be used, as e. g. INT_ASC. As in all BAPS standard subroutines,
the name PLC_process (PLC_time) is no reserved word. If the user
creates a BAPS subroutine with the name PLC_process
(PLC_time), it will cover the standard subroutine PLC_process
(PLC_time) and can thus no longer be called.

Syntax of the the implicite declaration:

PLC_process=PLC_process(VALUE INTEGER: proc_no) ;Standard subroutine

PLC_time=PLC_time(VALUE INTEGER: task_no) ;Standard subroutine

In the above syntax the following applies:
D proc_no:

BAPS constant of the type INTEGER. Specifies the PLC program
module number, 1 to 128.

D task_no:
BAPS constant of the type INTEGER. Specifies the PLC task num-
ber, 1 to 8. The priority of the task decreases with ascending task
number, 1 = highest priority, 8 = lowest priority.

Electric Drives
and Controls

7−9Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.12.2 Single activation of program modules

When calling the standard subroutine PLC_process, a program module
is passed once on the PLC. The processing of the BAPS program is in-
terrupted and will only be continued after having ended the PLC program
module (synchronous processing).

. The PLC contains 128 prepared program modules: PROC_001 to
PROC_128. These constants are not predefined in BAPS. They
have to be declared if required, e. g. in an include file.

7.12.3 Cyclical activation of program modules

The cyclical activation of program modules on the PLC represents an ex-
pansion of the above single program module call.

There are two different types to distinguish:
D cyclical activation without fixed time raster
D cyclical activation with a fixed time raster

Cyclical activation without fixed time raster

The start statement START PLC_process serves in BAPS the cyclical
activation of a program module in the PLC. Since the programs are al-
ways processed cyclically in the PLC, the program module activated by
means of the START PLC_process is also processed cyclically in the
PLC.

Cyclical activation of PLC programs with a fixed time raster

PLC program modules with a fixed time raster can be activated from out
of BAPS user programs to permit a quick cyclical operation of the peri-
pheral equipment. The start statement also serves the cyclical activation
of a program module in the PLC. The standard subroutine PLC_time is
contrary to the activation without fixed time raster used as a parameter.

The cyclical activation with a fixed time raster is realized by program-
ming time-controlled modules on the PLC. They are called by means of
prepared program modules in a fixed time raster.

The determination of a time raster is made by the extention of the start
statement. The time value can in this case be specified in seconds. The
specification of a time value is optional. If it is not specified, the time value
set in the PLC is used. In this case, there will be no transfer of time values
to the PLC. If a time is programmed, the execution of the BAPS program
is stopped until the PLC has taken over the value.

7−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.12.4 Extension of the START statement

The START statement is extended by the following functions:
D Standard subroutine:

Use of one of the standard subroutines PLC_process resp.
PLC_time.

D Argument list:
Specification of a parameter within the START statement. This is only
permitted when using the standard subroutines PLC_process resp.
PLC_time.

D Event:
Specification of a time value for the cyclical activation in a fixed time
raster. The specification is made in seconds.

Syntax:

start_statement=START name[(argument)][priority][event]

name = external_mp_name resp. name = PLC_process resp. name =
PLC_time

argument = constant_expression

priority = PRIO = constant_expression

event = EVERY T = expression

In the previous syntax the following applies:
D name:

External main program name, PLC_process or PLC_time. The stan-
dard subroutines PLC_process and PLC_time require the specifica-
tion of the desired PLC program modules as parameter.

D argument:
Constant expression; specifies the PLC program module resp. PLC
task number. Only permitted for PLC_process or PLC_time.

D expression:
Specification of the time value in seconds, only for PLC_time. The ex-
pression is of the type REAL.

Electric Drives
and Controls

7−11Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.12.5 Extension of the STOP statement

The execution of program modules is stopped on the PLC by means of
the stop statement STOP PLC_process (PROC_xxx). The argument in
the brackets of the instruction specifies the PLC program module to be
stopped.

For this purpose, the stop statement is extended by the following func-
tions:
D Standard subroutine:

Use of one of the standard subroutines PLC_process resp.
PLC_time.

D Argument list:
Specification of a parameter within the stop statement. This is only
permitted when using the standard subroutines PLC_process resp.
PLC_time.

Syntax:

stop_statement=STOP name[(argument)](1)

name = external_mp_name resp. PLC_process resp. PLC_time

argument = constant_expression

(1) is only permitted for PLC_process resp. PLC_time

In the previous syntax the following applies:
D name:

External main program name, PLC_process or PLC_time. The stan-
dard subroutines PLC_process and PLC_time require the specifica-
tion of the desired PLC program modules as parameter.

D argument:
Constant expression; specifies the PLC program module resp. PLC
task number. Only permitted for PLC_process or PLC_time.

7−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

Example of PLC integration for rho4:

PROGRAM rho_plc

CONST:

 pm_005=5,

 pm_007=7,

 pm_cycl=1

BEGIN

 PLC_process(pm_007) ;Single call of a PLC program module. The
 ;program rho_plc is only continued, when the
 ;program module pm_007 has been passed.

 START PLC_process(pm_005) ;Starts program module pm_005 on the PLC cyclically
 ;with each PLC cycle.

 STOP PLC_process(pm_005) ;The program module pm_005 is no longer
 ;passed in the next PLC-cycle, the
 ;program module 5 has stopped. i. e. STOP does
 ;not act immediately as in BAPS processes.

 START PLC_time(pm_cycl) EVERY T=500 ;Starts program module pm_cycl every
 ;500 ms

 IF condition (PLC_time(pm_cycl))

 THEN STOP PLC_time(pm_cycl) ;Program module pm_cycl has stopped

 START PLC_time(pm_cycl) ;Starts program module pm_cycl,
 ;using the time value set
 ;in the PLC

PROGRAM_END

Electric Drives
and Controls

7−13Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.13 CONDITION interface, process, system signal, file

CONDITION

This function permits to determine the statuses of interfaces, processes,
system signals and files.

The following interfaces are supported:
D V24_1 to V24_4
D PHG
D TTY
D WIN_1 to WIN_4
D PLC

Example:
IF CONDITION(V24_1)<0

 THEN statements

 ELSE statements

The possible conditions are made available to the program for evalua-
tion via the return value of the function of the data type INTEGER. The
function value can be evaluated by the BAPS programmer, and the cor-
responding reactions can be initiated.

7−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

The following values are supplied by the standard function condition:

Function value Meaning

0 no error

−1 interface not available

−2 interface is occupied

−3 timeout

−4 parity error

−5 overrun error

−6 framing error

−7 general interface error

−8 length error of character string

−9 protocol error

−10 REAL value not permitted

−11 point not defined

−30 BUEP data error PCL

−31 DM on PCL not ok

−32 DM length to high

−33 DM length not assigned

−34 DM No. not assigned

Also files are permitted as arguments for the function CONDITION.

FILE: data ;Declaration of the file. data can represent any filename

IF CONDITION(data)<0 ;Inquiry whether file is available

THEN JUMP n_dat

n_dat:

The following values are supplied by the function CONDITION:

Function value Meaning

0 no error

−1 FILE not available

Electric Drives
and Controls

7−15Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Also processes are permitted as arguments for the function CONDI-
TION.

EXTERNAL: procname ;Declaration of the process. procname can represent
 ;any process name

IF CONDITION(procname) = −1 ;Inquiry whether process is available

THEN JUMP n_proc

n_proc:

The following values are supplied by the function CONDITION:

Function value Meaning

−1 Process not found

1 Process runnning

2 Process idle

3 Process ready

4 Process has reached breakpoint (BAPS plus)

5 Process stopped (e.g. at Emergency−Stop)

11 1 Sub−Process active

12 2 Sub−Processes active

13 3 Sub−Processes active

14 4 Sub−Processes active

15 5 Sub−Processes active

10+n n Sub−Processes active (n= 1 until 90)

>100 Process error (runtime error)
error code see manual “Status messages and warnings”

7−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

Also system signales are permitted as arguments for the function CON-
DITION.

There are two programming possibilities:

− The corresponding signal address is directly inserted as parameter
 between inverted commas
− The desired signal address is assigned indirectly by means of a
 text constant

Examples:

CONST : ;Declaration of the system signal. I85.7 and I13 can
 txtconst = ’I85.7’ ;represent any system signal
 txtbyconst = ’I13’

INTEGER: state

state = CONDITION(’I0.0’) ;Input signal Byte0, Bit0
state = CONDITION(’I0’) ;Input signal Byte 0

state = CONDITION(txtconst) ;Input signal Byte85, Bit7
state = CONDITION(txtbyconst) ;Input signal Byte13

The following values are supplied by the function CONDITION

Function value Meaning

0/1 Signal condition (0 resp. 1)

0..255 Signal condition of a byte

−1 invalid signal group

−2 invalid bit address

−3 invalid character

−4 invalid signal address

Electric Drives
and Controls

7−17Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Extension of the standard function ’CONDITION’

The standard function condition is extended to permit the two standard
subroutines PLC_process and PLC_time as arguments, see section
7.12.1. The return values of the standard function condition when using
the two standard subroutines are defined as follows:

0 program module not active

1 program module is active

Syntax of the implicite declaration:

CONDITION=INTEGER: CONDITION(argument) ; standard function

argument = file variable resp. interface resp. name resp. text expression.

name = external_mp_name resp. PLC_process (parameter) resp.
PLC_time (parameter).

parameter = constant_expression.

In the previous syntax the following applies:
D Name:

External main program name, PLC_process or PLC_time. PLC_pro-
cess and PLC_time require the specification of the desired PLC pro-
gram modules as parameter.

D Parameter:
Constant expression; number of the desired PLC program modules.

Compiler statement SER_IO_STOP

The compiler statement can avoid that a user program is aborted when
an interface error occurs.

Syntax:

;;SER_IO_STOP− ;No program break in case of error

;;SER_IO_STOP+ ;Program break in case of error

;;SER_IO_STOP ;Program break in case of error

The statement is only permitted at the start of a program. It applies to the
entire program and may only appear once. If the compiler statement is
not used, an interface error will lead to a pogram break.

Example:

;;SER_IO_STOP− ;No program break

PROGRAM io_test ;Program name

7−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

INTEGER: index,number ;Declarations

BEGIN

 number=0

 READ V24_1,index

 IF CONDITION(V24_1)<0

 THEN

 BEGIN

 WRITE ’general read error V24_1’

 HALT

 END

 ELSE

 REPEAT index TIMES

 number=number+1

 REPEAT_END

PROGRAM_END

Electric Drives
and Controls

7−19Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.14 ASSIGN

ASSIGN (file variable, text expression)

The statement ASSIGN permits to change the names of files or the as-
signment of the standard channels V24_1 to V24_4, SER_1 to SER_4
and PHG at the program runtime by the user program.

. The ASSIGN statement can only be applied to closed files and stan-
dard channels.

Syntax:

 ASSIGN datvar,datname ;Assignment of the content of the text variable datname
 ;to the file variable datvar.

 READ_BEGIN datvar ;The following read access to the file is made with the
 ;name read in the variable datname.

 READ datvar, oneline

 WRITE PHG, oneline

 CLOSE datvar

 channel_var=’V24_2.’ ;Assignment of the output channel PHG to the serial
 ;interface V24_2 by means of the text variable
 ;channel_var.

 ASSIGN PHG, channel_var

 WRITE PHG, oneline ;Output of a line on channel V24_2.

 ASSIGN PHG, ’PHG.’ ;Reassign the channel PHG to the PHG.

PROGRAM_END

. The character ’.’ is important for the channel names as an identifi-
cation of the end. If no dot follows as last character, the assignment
will be made to a file name with the extension dat, e. g. PHG.dat.

7−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.15 Conversion routine INT_ASC

The standard procedure INT_ASC converts an integral value into an ar-
ray of characters.

. The format is right-aligned with possibly leading space characters.
If an error is detected during the conversion, the character array
will remain unchanged and the corresponding error code will be re-
turned.

Syntax:

INTEGER: int_number ;Default

INTEGER: index_na ;int_number = number to be converted. Only

INTEGER: length_char ;permitted of the type INTEGER, e. g.

INTEGER: error_ret ;integer value <= 2147483647

ARRAY[1..10] CHAR: ascii_array ;Result return message ascii_array = result array
 ;of the type ARRAY [] character

int_number=−1234 ;Default

index_na=1 ;index_na = start index in the character array

length_char=5 ;Default
 ;length_char = maximum number of characters
 ;reserved for the number to be converted.

INT_ASC(int_number,ascii_array,index_na,length_char,error_ret)
 ;The destination range is initialized with space
 ;characters before the conversion.

IF error_ret<>0 ;Result return message error_ret =
 ;output of error number

 THEN WRITE ’INTEGER-ascii conversion error’

 ELSE WRITE ascii_array

Electric Drives
and Controls

7−21Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Meaning of error number

0 no errors

−1 start index exceeds array limits

−2 end index, consisting of start index and length, exceeds
array limits

−3 reserved length is too small

−4 range exceeded (value too high)

−5 array length < 0

−6 array length = 0

7−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.16 Conversion routine ASC_INT

The standard procedure ASC_INT converts an array of characters into
an integral value.

The procedure reads characters beginning at the start position until a
character is recognized which is not a number or until the maximum
number of characters has been read resp. the end of the character array
has been reached.

Syntax:

INTEGER: int_number ;Result return message
 ;int_number = converted number (only
 ;permitted of the type INTEGER)

INTEGER: index_na ;Default
 ;index_na = position in the array, from which the
 ;reading of the number should start

INTEGER: length_char ;Default
 ;length_char = maximum number of characters to be
 ;read

INTEGER: error_ret

ARRAY [1..10] CHAR: ascii_array ;ascii_array = array to be converted of the type
 ;ARRAY[] CHAR

ascii_array=’AaBc’

index_na=1

length_char=5

ASC_INT(ascii_array,int_number,index_na,length_char,error_ret)

IF error_ret<>0 ;Result return message error_ret =
 ;output of error number

 THEN WRITE ’ascii-INTEGER conversion error’

 ELSE WRITE int_number

Electric Drives
and Controls

7−23Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Meaning of error number

0 no errors

−1 start index exceeds array limits

−2 end index, consisting of start index and length, exceeds ar-
ray limits

−3 −−−−−−

−4 range exceeded (value too high)

−5 array length < 0

−6 array length = 0

−7 character string does not start with a number or a sign

7.17 Call of rho4 library functions

In the rho4 library, library functions are made available for the OEM
C functions which serve the communication with the basic operating sy-
stem and permit the access to operating system variables. These func-
tions are declared in the individual include files, divided by function
groups, and are adopted into the BAPS program by means of INCLUDE
statement if required. The rho4 library functions can then be called di-
rectly in the BAPS program.

The declaration of these functions is made similar to the special func-
tions via a new function declaration part named RHO_FCT. The func-
tions declared there, always send back a return code of the data type
INTEGER which contains the error messages and warnings.

Further details, especially the names of the functions and function
groups can be taken from the manual ’DLL libraries’.

. Since RHO_FCT is a reserved word, it may only be used within the
declaration part of the library functions.

The rho4 library functions can in BAPS programs also be used at other
places at which a subroutine is expected. In this case, the return value of
the function is ignored.

Syntax the library function declaration:

RHO_FCT:
const_expression=name[parameterlist]{,const_expression=name[parameterlist]}

In the previous syntax the following applies:
D const_expression:

Constant expression of the type INTEGER. Function number of the
desired library function. This number is determined by Bosch.

7−24 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

D name:
Name the desired library function, can be changed by the user if re-
quired.

D parameterlist:
Parameter of the desired library function. The number of parameters
and their types are determined by Bosch and must not be changed.

Example of an include file for library functions (rhoKin.inc)
rhoKin.inc ;file: rhoKin.inc

TYPE :TVB_AxPos=RECORD ;components
 RECORD_END

RHO_FCT: 0815=rKGAxPos(TVB_AxPos: AxPos),
 4711=rKGAllAxPos(TVB_AllAxPos: AllAxPos)

Example of library functions
PROGRAM rhoFct

;;INCLUDE rhoKin.inc ;Contains constants and record types of
 ;the rho4 functions, among others also the
 ;record type TVB_AxPos!

TVB_AxPos: VB_AxPos INTEGER: ReturnCode ;Record type TVB_AxPos is contained in
 ;rhoKin.inc

BEGIN

 ReturnCode=rKGAxPos(VB_AxPos) ;rKGAxPos contained in rhoKin.inc

 IF ReturnCode <0

 THEN WRITE ’error’:,ReturnCode

 IF rKGAxPos(VB_AxPos)<0 ;simplified writing

 THEN WRITE ’error:’,ReturnCode

PROGRAM_END

Electric Drives
and Controls

7−25Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.18 rho4 special functions

With the special functions, the BAPS3 programmer will obtain access to
special functions present in the control rho4 for which no BAPS3 lan-
guage elements are reserved.

Special functions represent an extension of the BAPS3 language extent.
They can be called in a program if they have been defined before the call
in a similar way to a variable.

. Not all listed special functions are suggestive resp. practicable for
each rho4 controllable kinematics. If you have a question, please
apply to the technical support:

mailto: Mounting-Handling-RC.brc@boschrexroth.de
Phone: +49 (0) 60 62 / 78−0

7−26 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

In the rho4, the following special functions are available:

Ft. No. Function short description

1 Position exact switching of digital outputs on the path

2 Positionexact switching of decimal outputs on the path

3 Set machine position

4 Call operating system functions

15 Parametrization of the belt characteristic

16 Select point file

17 Mirroring

21 Belt type

23 System data and time

24 System counter

27 WC main counter

28 Set belt counter

29 Switch on set path registration

30 Switch off set path registration

31 Read set path values

43 Flying measurement On, only available for rho4.1

44 Flying measurement Off, only available for rho4.1

45 MOVE_FILE, run curve from .bnr-file

46 Adjust set advance

47 Define exception

48 Detect exception

51 Set of belt counter reset value (from version VO05 no more avai-
lable)

52 Velocity adjustment for PTP movements

53 Belt range with beltkind 4

54 Questioning the belt velocity with beltkind 4

55 Changing the belt simulation velocity with beltkind 4

56 Accurate beltsynchronous position switching of digital outputs on
the path

57 Accurate beltsynchronous position switching of decimal outputs
on the path

Electric Drives
and Controls

7−27Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Specifying the special functions

The specification of a special function contains code and name of the
function as well as name and data type of the transfer parameters.
Through the transfer parameters, you define when, where and how the
function is to be effective. The specification must be done in the declara-
tion part of the program.

The name of the special function and the names of the transfer parame-
ters can be freely chosen.

. The data types are fixed through the specification of the correspon-
ding special function.

Example

SPC_FCT : x = example (VALUE REAL: wap)

SPC_FCT : x Function number

example Special function name

VALUE REAL: Data type designation of the transfer parameter, e.g. deci-
mal value

wap Name of the transfer parameter

Call of the special function

The call in the instruction part of the program is made through the entry of
the special function name and the definition of the specified transfer pa-
rameters.

In the call, the name of the special function and the types of the transfer
parameters must be kept in the way as they have been defined in the
specification in the program.

General example

example (15.5)

with the meaning

example Special function name

(15.5) Definition of the transfer parameter

The special functions are described in the manual rho 4 ’Control func-
tions’.

7−28 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.19 Standard function ’sizeof’

The standard function ’sizeof’ serves the determination of the required
memory space for any BAPS variable resp. type. Especially when di-
mensioning transfer buffers, e. g. for the communication via TCP/IP con-
nections, it is important to know the memory requirement for a given
variable (data buffer). When programming under Windows it is a quasi
standard to initialize the first element of a complex data structure with its
size.

The function sends back the memory requirement of the specified type
or the variable in bytes. The standard function ’sizeof’ can be used within
the constant definition part.

Syntax of the implicite declaration:

sizeof=INTEGER: sizeof(type_or_variable) ;standard function

In the previous syntax the following applies:
D Type_or_variable:

Any type resp. variable name.

The following table shows the memory place of the standard types.

Electric Drives
and Controls

7−29Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Table of memory requirement for the BAPS data types

Data type sizeof (data type)
[Bytes]

corresponding MS-C/C++ -type Value range in
BAPS

BINARY 4 long [0, 1]

INTEGER 4 long [−2147483648
,
+2147483647]

REAL 4 (IEEE, simply exact) float 3.4E +/−38
(7 digits)

CHAR 1 unsigned char [CHR(0),
CHR(255)]

POINT axisnumber * sizeof (REAL) typedef float POINT[axisnumber] −

JC_POINT axisnumber * sizeof (REAL) typedef float
JC_POINT[axisnumber]

−

BELT 4 + sizeof (REAL) typedef struct BELT
{float belt_value
long belt_No } BELT

−

WC_FRAME 6 * sizeof (REAL) typedef float WC_FRAME[6] −

TEXT 80 * sizeof (CHAR) typedef char TEXT[80] −

INPUT <type> 4 + sizeof <type> typedef struct IN<type>
{<type> value; long address}
IN<type>

see <type>

OUTPUT <type> 4 + sizeof <type> typedef struct OUT<type>
{<type> value; long address}
OUT<type>

see <type>

FILE 28 − −

BNR_FILE 28 − −

SEMAPHORE 0 (no memory is reserved) − −

Example standard function sizeof
;;JC_names=a1,a2,a3,a4

;;WC_names=c1,c2,c3,c4

PROGRAM size

POINT: EndPos

BEGIN

 WRITE ’REAL-size:’,sizeof(REAL) ;output: 4

 WRITE ’POINT-size:’,sizeof(EndPos) ;output: 16 (4 axes * size of REAL)

PROGRAM_END

7−30 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.20 Workpiece coordinate system

7.20.1 General information

The function ’workpiece coordinate system’ makes it possible for the
user to define his own world coordinate systems, both in the automatic
and the manual mode.

It is thus possible to adapt a BAPS processing program established in
workpiece coordinates to the current position of the workpiece, e. g. a
program created offline can be adapted to the actual position in the pro-
cessing phase.

Example varnishing system:
The car body data supplied by a CAD-system refer to the car body (zero
point of the coordinate system is placed in the front axle of the car). The
function workpiece coordinate system permits to adapt the varnishing
programs to all occurring carriage types.

Example palettising:
A corner of the pallet is defined as the zero point of the local coordinate
system. All processing points have been teached. During assembly, the
pallet can lie anywhere in the working area of the robot. The function
workpiece coordinate system makes it possible to process the pallet in
every position without changing the program.

7.20.2 Name determination of coordinate systems

Because we speak in the following of different coordinate systems, here
are the name determinations:
D JC = Joint Coordinates. Describe the several axis positions in [mm]

(linear axis), resp. [degrees] (rotation axis)

The units of the following coordinate systems are in each case (x, y, z) in
[mm] + 3 rotations at the coordinate axes in [degrees] :
D WC = World Coordinates. Is a free definable local world coordinate

system, also called workpiece coordinate system
Standard (= in the robot root point): WC = OC
WC system programmed: WC = WC_System

D OC = Original Coordinates. Is a fix defined coordinate system related
to the robot root

D GC = Gripper Coordinates. Is a co-moved coordinate system related
to the TCP (only enable in manual operation)

D CC = Cell Coordinates. Is a fix defined coordinate system, related to
the working cell

Electric Drives
and Controls

7−31Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Fig. 1

7−32 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

Fig. 2

CC-System (fix)

Robot Basic System (fix)

GC-System (moved)

local
WC-System (variable)
(workpiece-coord)

Cell coordinates

Without WC-System programming, the occured world-coordinate points
in a movement program relate always to the cell-coordinate system
(CC). The original-coordinate system (OC) is only required control-inter-
nal.

Machine parameter P310 describes the transformation from cell-coordi-
nate system into original-coordinate system (CC −> OC). At the determi-
nation of the values in P310 it must be observed, that the corresponding
values are related to the CC-System (not to the OC-system). If all values
of P310 identical zero, the cell-coordinate system comply with the origi-
nal-ccordinate system, i.e. the CC-System lies in the OC-System.

At kinematics with missing degrees of freedom (i.e. with less than 6
axes), displacements (in x,y,z) can be compensated. For this purpose
the library functions rMPGKinP0310 (No. 9310) and rMPSKinP0310
(No. 10310) are available.

At kinematics with 6 degrees of freedom, the displacements (in x,y,z)
and all three orientations (O1,O2,O3) can be compensated. The orienta-
tion definition meet the definition of the robot. For this purpose the library
functions rMxGKinP0310 (No. 19310) and rMxSKinP0310 (No. 20310)
are available.

Electric Drives
and Controls

7−33Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.20.3 BAPS Syntax

For the definition of the individual coordinate systems, the following lan-
guage elements are used in the programming language BAPS:
D WC_FRAME
D WC_SYSTEM
D WC_UR

WC_FRAME is a kinematic-specific standard BAPS type consisting of
six components of type REAL. The 6 components describe the displace-
ment and rotation of the workpiece coordinate system (local WC system)
opposite to the original coordinate system (robot coordinate system).
The parameter block specifies the position of the zero point of the local
WC system in the original coordinate system. The order of the compo-
nents is fixed as follows:

Translation of the original coordinate sy-
stem in

first component = Dx x direction

second component = Dy y direction

third component = Dz z direction

Rotation by the

fourth component = Do1 first orientation axis

fifth component = Do2 second orientation axis

sixth component = Do3 third orientation axis

The special definition and order of the 3 orientations depend on the robot
type and if necessary of the selected orientation definition.

. This order has to be observed in any case.

The displacements are entered in mm and the rotations in degrees.

Restriction:

The workpiece coordinate system can only be used with 6-axis kinema-
tics. If the kinematic has less than 6 degrees of freedom, in machine pa-
rameter P313 must be determined, which axis should be considered. In
this case the workpiece coordinate system can be displaced in all 3 di-
rections and maximal 1 axis can be rotated. Around which axis the rota-
tion can take place, can only be inquired directly from Bosch-Rexroth.

WC_SYSTEM is a kinematic-specific standard variable of the type
WC_FRAME. The valid workpiece coordinate system is communicated
to the control and activated via this standard variable.

7−34 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

WC_UR is a constant of the type WC_FRAME predefined in BAPS. Its
six components have all the value zero. If this constant is assigned to
WC_SYSTEM, all displacements and rotations will become zero relative
to the original coordinate system. For example by

pallet_1.WC_SYSTEM = WC_UR

The workpiece coordinate system thus eqals the original world coordi-
nate system.

Variable−declaration and −assignment

<Kinematic−name>.WC_FRAME : <WC−Varname>

<WC−Varname> is the name (variable name) of the local workpiece
coordinate system that can be freely selected by the user. Its length may
have a maximum of twelve characters.

The WC_FRAME variables declared in this way may be used in a BAPS
program in three different ways:
D (1) per direct declaration of value
D (2) per assignment via variable
D (3) via the fixed defined component names

Pose_x, Pose_y, Pose_z, PoseO1, PoseO2, PoseO3.

This variant offers additionally the possibility, to readout the actual va-
lues of the variable WC_FRAME.

Example:
;;KINEMATICS: (1=Rob1)

REAL: V1, V2, V3, V4, V5, V6

Rob1.WC_FRAME: pallet1, pallet2, deposit_pal

.

.

(1) pallet1 = WC_FRAME (10.1, 20.2 30 40 45 10.6)

(2) pallet2 = WC_FRAME (V1, V2, V3, V4, V5, V6)

(3) deposit_pal.Pose_x = V3
V5 = depositpal.PoseO3

The WC_FRAME variables supplied with values are used below for swit-
ching the WC coordinate system. The keyword WC_FRAME is used at
the assignment to distinguish the six REAL values from a 6-axis WC
point.

Electric Drives
and Controls

7−35Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.20.4 System file WCSYST.DAT

Alternatively to the direct programming, the ASCII system file
WCSYST.DAT (counterpart to TOOLS.DAT) in which all local coordinate
systems are defined by name, is available.

WCSYST.DAT is the reserved name for the file to be created by the user
himself. The name of the file depend on the selected language in ma-
chine parameter P10.

The individual local WC coordinate systems are named with a free selec-
table name by the user. Under this name the appropriate coordinate va-
lues are discarded.
The file WCSYST.DAT is edited as ASCII file in the robot control or of-
fline. For each line, one WC sytem name and all associated coordinate
values are entered as follows:

pallet3 = 11.1 22.2 33 44 55.5 66

The name of the local WC system must be at the beginning of the line
and its length must not have more than twelve characters. It can be freely
selected. The WC system name and the coordinate values are to be sep-
arated by equal signs ’=’.

The individual coordinate data are to be separated by space characters.
They are decimal values, whereby the decimal point has not in any case
to be set. For the coordinate values, only the entries ’0’, ’1’ to ’9’, ’+’, ’−’
and ’.’ are permitted.

Comments at the end of the line are permitted. They must start with ’;’.
Complete comment lines are also allowed. They too must start with ’;’.

7.20.5 WC system selection in a BAPS program

The activation of a local workpiece coordinate system may take place in
3 kinds.

;;KINEMATICS: (1=Rob1)

;;INCLUDE RK.INC

TKSWcSystem: PKSWcSystem

Rob1.WC_FRAME: pallet1, pallet2

.

.

(1) Rob1.WC_SYSTEM = WC_FRAME (0, 0, 30.5, 0, 0, 0)

(2) Rob1.WC_SYSTEM = pallet1

7−36 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

(3) PKSWcSystem.ChannelId = 0
 PKSWcSystem.System.KinNr = 1
 PKSWcSystem.WcSysName = ’pallet2 ’
 Ret = rKSWcSystem (PKSWcSystem)

With variant 1 the coordinate values are programmed directly at the acti-
vation.
With variant 2 the values of the variables of ”pallet1” are activated.

With variant 3 the WC system with name “pallet2” is activated by a library
function. The name and the appropriate coordinate values must be defi-
ned in the system file ”WCSYST.DAT” (see chapter 7.20.4).
Variant 3 ist name oriented. With variants 1 and 2, the name ’WCSys ac-
tive’ is assigned by the operating system.

. Attention: Because movement informations may vary by instruc-
tions, the local WC system may only be switched over in a BAPS
program in automatic mode in a non-permanent process.

With the assignment of the BAPS standard variable WC_UR the activa-
tion of a special local WC system can be suspended. In this case the
name ’WCur active’ is assigned by the operating system.

Rob1.WC_SYSTEM = WC_UR

7.20.6 Machine parameter P313: WCSYS-ROB assignment

For the general definition of the workpiece coordinate system, six com-
ponents are used, as mentioned before. If the kinematic has less than six
degrees of freedom, it is not possible to compensate for all displace-
ments/rotations of the workpiece coordinate system.

In this case, the rotations of the workpiece coordinate system opposite
the original coordinate system is defined as follows:
D Pose_O1 rotation around the x-axis
D Pose_O2 rotation around the y-axis
D Pose_O3 rotation around the z-axis

Via machine parameter P313 the control is informed about
D which of the 6 common workpiece coordinates are considered by the

mechanics
D which robot coordinate corresponds to which workpiece coordinate

. Machine parameter P313 is only necessary with kinematics with
missing degrees of freedom.

Electric Drives
and Controls

7−37Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Example 1: 4-axis Scara

A 4-axis Scara may move in x, y, z - direction and may perform a rotation
around the z-axis. Thus the machine parameter P313 has the following
assignment:

WCSYS−x = 1
y = 2
z = 3
a = 0
b = 0
c = 4

Example 2: 3-axis roof machine with belt

A 3-axis roof machine may move in y, z - direction and may perform a
rotation around the y-axis. The belt moves to x-direction. A BAPS point
has the following components:
P1 = (yc, zc, bc, blt)
The belt coordinate (= 4. coord) is added alternatively to the workpiece
coordinates. In order that, the parameter P313 has the following assign-
ment:

WCSYS−x = 4
y = 1
z = 2
a = 0
b = 3
c = 0

P313: WCSYS-ROB assignment

WCSYS-x 1 The first WC-PNT component (SCx) corresponds to WCSYS-x

WCSYS-y 2 The second WC-PNT component (SCy) corresponds to WCSYS-y

WCSYS-z 3 The third WC-PNT component (SCz) corresponds to WCSYS-z

WCSYS-a 0 an orientation change Da is not compensated

WCSYS-b 0 an orientation change Db is not compensated

WCSYS-c 4 The fourth WC-PNT component (SCc) corresponds to WCSYS-c

Example: 3-axis roof machine

Faulty inputs in the machine parameter P313 can cause the following
runtime messages:

7−38 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

WCS: P313 value not per-
mitted

The entered value is negative or greater than the axis
number (plus possibly belt number).

WCS: no pos offset No position offset is entered, i. e. WCSYS-X =
WCSYS-Y = WCSYS-Z = 0.

WCS: too many angles More than one orientation offset WCSYS-a, WCSYS-
b, WCSYS-c has been defined. At this place, a maxi-
mum of one orientation offset is permitted (see above
restriction). In the BAPS program it is, however, possi-
ble to program several rotations via the WC_FRAME.

7.20.7 Library functions

The class 2000 (rhoKinematics [rK]) of the rho4 library functions con-
tain 5 functions, which make the use of common WC systems easier. For
detailed description of the parameter lists, see header files rk.h, resp.
rk.inc.
D 2071 : rKxGWcSystem

supplies name and coordinates of the active WC system
D 2072 : rKSWcSystem

activates the WC system selected by name. The name and the cor-
responding coordinate values must be defined in the system file
”WCSYST.DAT”

D 2073 : rKCWpFrame
calculates from 3 pallet positions P0, P1, P2, recorded in coordinates
of the original coordinate system WCur, the appropriate zero point of
the local WC system WCloc (inclusive rotation) opposite to the original
coordinate system (see Fig. 3)

Input-Par.: P0, P1, P2 in WCur, P0loc in WCloc (see Fig. 3)
Output-Par.: Variable of type WC_FRAME

For calculation, the following requirements must be fulfilled:
D The 3 points P0, P1, P2 must lie in the same pallet plane, i.e. they

have the same zloc-coordinate
D The vector P0P1 lies parallel to the x-axis
D The (x, y, z)-coordinates of the point P0 in the local WC system WCloc

must be known

Electric Drives
and Controls

7−39Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Fig. 3

The two following library functions may be used with 6-axis kinematics.
On missing degrees of freedom they are mathematical under determi-
ned and make no sense (see also Fig. 4):
D 2074 : rKTrfLocOri

calculates of the local coordinates of a point the appropriate original
coordinates

D 2075 : rKTrfOriLoc
calculates of the original coordinates of a point the appropriate local
coordinates

Both functions work name oriented relating to the local WC system. The
name with the appropriate coordinates is expected in the system file
WCSYST.DAT of the control (both in BAPS- and in the DLL-function).

Ploc corresponds to point P in coordinates of the local WC system.
Pur is the same point in coordinates of the original coordinate system
WCur.

7−40 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

Fig. 4

Example :

The pallet positions PalPos1, PalPos2 of pallet ”deposit_Pal” are acqui-
red offline (e.g. from a CAD-system). Thus they are coordinates of a local
WC system. To move to this coordinates in a BAPS program, they must
be converted into original coordinates. This is made with library function
2074.

Library functions are unaware of the standard type ’POINT’. For easier
handling in the BAPS program, only a BAPS conversion program is nee-
ded, which copies a point to a REAL array and vice versa (see below,
resp. C:\Bosch\rho4\Example\Baps\LocUr_K1.qll).

;external Subroutine ’Loc_Ur’

EXTERNAL;Loc_Ur (INTEGER: Ret Rob1.POINT: Ploc TEXT: WcName Rob1.POINT: Pur)

POINT: PalPos1, PalPos2, Pur1, Pur2

TEXT: deposit_Pal

INTEGER: RetCode

.

.

Loc_Ur (RetCode, deposit_Pal, PalPos1, Pur1)

MOVE LINEAR Pur1

Electric Drives
and Controls

7−41Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Loc_Ur (RetCode, deposit_Pal, PalPos2, Pur2)

MOVE LINEAR Pur2

This functionality is implicit executed inside in the operating system, if a
local coordinate system is activated by the WC_SYSTEM instruction.

WC_FRAME: pallet1

.

.

Rob1.WC_SYSTEM = pallet1

MOVE LINEAR PalPos1

MOVE LINEAR PalPos2

;−−
;−−
;−−− External main program for kinematics 1:
;−−− Tranformation WC−Loc −> WC−Ur:
;−−−
;−−− Transforms an existing point in a local WC system (workpiece coord.)
;−−− into the original coordinate system
;−−
;−−

;;CONTROL = RHO4

;;KINEMATICS : (1=Rob1, 2=Rob2)

;;Rob1.WC_NAMES = xx,yy,zz,o1,o2,o3

;;Rob2.WC_NAMES = xx,yy,zz,o1,o2,o3

PROGRAM Loc_Ur (INTEGER: Ret Rob1.POINT: PLoc TEXT: WcName Rob1.POINT: Pur)

;;INCLUDE RMAIN.INC

;;INCLUDE RK.INC

BEGIN

 LocUr (Ret, PLoc, WcName, Pur)

PROGRAM_END

7−42 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

;−−
SUBROUTINE LocUr (INTEGER: Ret Rob1.POINT: PLoc TEXT: WcName Rob1.POINT: Pur)
;−−
; The real functionality is realized in a subroutine,so that the routine
; is reentrent. The following declared variables lie in this case on the
; stack; in an external main program it would be global variables.
;−−

INTEGER : i

TKTrfLocOri : PKTrfLocOri

BEGIN

 PKTrfLocOri.ChannelId = 0

 PKTrfLocOri.KinNr = 1

 i=0

 REPEAT 12 TIMES

 i=i+1

 PKTrfLocOri.WcSysName[i] = WcName[i]

 REPEAT_END

 PKTrfLocOri.PntLoc[1] = PLoc.xx

 PKTrfLocOri.PntLoc[2] = PLoc.yy

 PKTrfLocOri.PntLoc[3] = PLoc.zz

 PKTrfLocOri.PntLoc[4] = PLoc.o1

 PKTrfLocOri.PntLoc[5] = PLoc.o2

 PKTrfLocOri.PntLoc[6] = PLoc.o3

 Ret = rKTrfLocOri (PKTrfLocOri)

 PUr.xx = PKTrfLocOri.PntOri[1]

 PUr.yy = PKTrfLocOri.PntOri[2]

 PUr.zz = PKTrfLocOri.PntOri[3]

 PUr.o1 = PKTrfLocOri.PntOri[4]

 PUr.o2 = PKTrfLocOri.PntOri[5]

 PUr.o3 = PKTrfLocOri.PntOri[6]

SUB_END

Electric Drives
and Controls

7−43Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

7.20.8 Workpiece coordinate system in a BAPS program

ATTENTION
When starting the program, it has in any case to be ensured
that the correct workpiece coordinate system is activated. If
programs are executed with false workpiece coordinate sy-
stems, unexpected movements can occur. The same effect can
occur if different workpiece coordinate systems are used for
a taught world coordinate point for the Teach In and for the ex-
ecution of the program!

World coordinate points (WC points)

All world coordinate points used in a BAPS program refer to the local
workpiece coordinate system, regardless of the fact whether they are
textually programmed offline or taught online.

By activating a WC system, these points are transformed within the con-
trol into original coordinates.

. In PNT-Files, WC points are basically stored in values of the active
local workpiece coordinate system.

Joint coordinate points (JC points)

All points programmed in joint coordinates (JC_POINT, @-points) re-
main unchanged when switching to a specific workpiece coordinate sy-
stem. Joint coordinate points describe the axis position of the robot and
are therefore independent from the active workpiece coordinate system,
e. g. @homepos, @(0, 0, 0, 0, 0, 0).

POS, @POS, @MPOS

The values achieved by the assignment
D act_pos = POS

depend on the currently active workpiece coordinate system. POS des-
cribes the actual position of the robot in local workpiece coordinates.

@POS and @MPOS specify the axis position of the robot each. They
are independent from the active workpiece coordinate system.

LIMIT_MIN, LIMIT_MAX

By means of the assignments
D kin1.LIMIT_MIN = min_position
D kin1.LIMIT_MAX = max_position

7−44 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

The workspace limits can be defined. In form, min_position and max_po-
sition are normal world coordinate points. They refer, as all the WC
points, to the local workpiece coordinate system. It results that LI-
MIT_MIN and LIMIT_MAX are programmed in workpiece coordinates.

Standard functions JC(), WC()

The standard function JC supplies a conversion from world into joint
coordinates, e. g.
D @start_pos = JC(start_pos).

As result, the arm position of the kinematics is achieved. Since the star-
ting point is a world coordinate point, the result depends on the active
workpiece coordinate system.

The standard function WC supplies a conversion from joint into world
coordinates, e. g.
D start_pos = WC(@start_pos).

The result are coordinates referred to the local workpiece coordinate sy-
stem, i. e. the result depends on the active workpiece coordinate sy-
stem.

Special functions 1, 2, 56, 57: IO/PPO logic

By means of this special functions, position-specific outputs of process
parameters can be programmed.

The programmed switching on/off coordinates refer to the local work-
piece coordinate system, i. e. it is for example always switched at the
same position. When looking at the original coordinate system (robot
coordinate system), the switch points change with different workpiece
coordinate systems.

Special function17: MIRROR

This option permits mirroring any points at the axes of the world coordi-
nate system. As with all other programmed world coordinate points, mir-
roring refers to the local workpiece coordinate system.

Displacement of the world coordinate system (P310)

The zero point of the robot coordinate system is defined by means of the
machine parameter P310, i. e. it defines the original coordinate system.
The coordinates of the active workpiece coordinate system (i.e. the
coordinates transfered by the instruction WC_SYSTEM) always refer to
the original coordinate system.

Electric Drives
and Controls

7−45Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

Limit switch monitoring

In automatic operation, the software limit switches are monitored in joint
coordinates (see machine parameter P204, P205). The monitoring is in-
dependent from the currently active workpiece coordinate system.

Program end, program break, run-up of control

A change of the coordinate system is only possible via the selection in a
non-permanent BAPS program. After program end, the workpiece coor-
dinate system remains last selected active.

In case of a program break, e. g. Emergency stop input, auto-manual
switching, reset etc., the workpiece coordinate system active at the time
of program break remains active.

After the run-up of the control, the original coordinate system is active,
i. e. WC_SYSTEM = WC_UR.

Axis display

The axis display on the PHG2000 under mode 7.1 have the following ef-
fects:
D In joint coordinates (JC), always the current axis position is displayed.

It is independent from the active workpiece coordinate system.
D In world coordinates (WC), the values are displayed in local work-

piece coordinates. The display depends on the active workpiece
coordinate system.

D In original coordinates (OC) the positions are displayed in the original
coordinate system. The display is independent from the active work-
piece coordinate system. This level is only offered when WC_SY-
STEM <> WC_UR, i. e. when a local workpiece coordinate system is
activated.

Display of the active WC_SYSTEM

On the PHG2000 under mode 7.1 a level exists

on which the coordinates of the zero point of the currently active work-
piece coordinate system are displayed. If all coordinates equal zero, no
workpiece coordinate system is activated, i. e. WC_SYSTEM =
WC_UR.

7−46 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

7.20.9 Selection and function in manual mode

The function ’workpiece coordinate system’ acts for each kinematic glo-
bally, i. e. exceeding program and process limits. If individual part pro-
grams are called at several places of the overall process, it has to be
made sure, as far as the program technique is concerned, that they al-
ways work with the same workpiece coordinate system.

As mentioned before, a change of the workpiece coordinate system is
only possible via the selection in a non-permanent BAPS program.
Since after the program end the workpiece coordinate system actived
last remains active.

In manual mode it is possible by the PHG2000, to display the active
workpiece coordinate system, resp. to select a special one.

In PHG-Mode 2 (Manual) and 4.2 (Teach In), the left key of the second
row (from the top) is used as a function key (softkey, keycode “WAIT”).
Entering this key, the following mask is displayed:

WCSYST.DAT _X
O1

_Y
O2

_Z
O3

deposit_Pal1 100.123
40.345

200.123
50.567

300.234
60.321

pickup_Pal1 654.111
77.777

543.222
88.888

432.333
99.999

pickup_Pal2 454.111
77.777

343.222
88.888

332.333
99.999

pickup_Pal3 120.000
44.444

222.222
55.555

333.333
66.666

deposit_Pal2 254.111
77.777

143.222
88.888

232.333
99.999

deposit_Pal3 100.123
40.345

200.123
50.567

300.234
60.321

pallet2 110.123
45.345

220.123
55.567

330.234
65.321

In the last two lines the active local WC system (workpiece) is displayed.

In the middle part of the mask the content of the system file
WCSYST.DAT is displayed.

The invers displayed WC system can be activated by the <Enter> - key.
Thereby the permission key (deadman) must be released.

Using the following key combinations makes it possible to navigate with
the cursor within the WC system list:

Electric Drives
and Controls

7−47Bosch Rexroth AGRhoMotion1070072178 / 07

Functions

 Standard key assignment

< Cursor−Up > moves cursor up < Shift > < 5 >
< Cursor−Down > moves cursor down < Shift > < . >
< ’<’ > moves cursor one page up < Alt > < 7 >
< ’>’ > moves cursor one page down < Alt > < 8 >
< BEGIN > moves Cursor to begin of the list < BEGIN >
< END > moves cursor to end of the list < END >
< Cursor−Left > exit mask < Shift > < 1 >

Movements in jog mode

Movements in jog mode (Mode 2) or Teach in (Mode 4.2) depend on the
selected coordinate system (see chapter 7.20.2).

D JC: In joint coordinates in principle an axis-related movement take
place

D WC: In world coordinates a linear movement in coordinates of the
active local WC system (workpiece coordinates) take place

D OC: In original coordinates a linear movement in the fixed robot ori-
ginal coordinate system (independent from the active WC system)
take place

D GC: In gripper coordinates a linear movement in the co-moved grip-
per coordinate system (independent from the active WC system) take
place

7.20.10 Examples for special workpiece coordinates

The car body data of a car is supplied by a CAD system. The zero point of
the local workpiece coordinate system (in this case the car body coordi-
nate system) is placed in the front axle of the car. For processing, the car
body is drawn on a carriage through the working area of the robot.

With the instruction WC_SYSTEM, the control is communicated the off-
set of the zero point of the local workpiece coordinate system in relation
to the zero point of the original coordinate system (robot coordinate sy-
stem).

Example 1: pure height offset

Example 1 shows the case of a mere height offset of +Dz, i. e. on car-
riage 3 the car body is higher than on the standard carriage. The work-
piece coordinate system of the carriage 3 would have to be defined as
follows:

carr3=WC_FRAME(0,0,+Dz,0,0,0)

7−48 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Functions

Belt direction

Orig. coord.

+Dz

carriage 3

P = (3800, 88, 0, 0, 0, 0)
in workp. coord.

Workp. coord.

x

z

y

Tail Front

Example 2: height offset and rotation

In this example, the car body is compared with the standard carriage hig-
her and is turned by −Db around the y-axis. The workpiece coordinate
system of carriage 2 would have to be defined as follows:

carr2=WC_FRAME(0,0,+Dz,0,−Db,0)

Belt direction

Orig. coord.

Workp. coord.

+Dz

carriage 4
−Db

x

z

y

Tail

Front

Electric Drives
and Controls

8−1Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

8 Movement statements
Robot movements are initiated by movement statements. Movement
statements describe the movement of the robot from a current position
and orientation to a destination point.

In the rho4 a distinction is made between direct movement statements
and movement statements which influence movement.

8.1 Direct movement statements

A direct movement statement is made up of the following individual sta-
tements:
D Movement instruction
D Kinematic definition
D Interpolation mode
D Speed/acceleration
D Abort condition
D Destination

The movement instruction and the destination must always be program-
med.

Information on the kinematic, interpolation mode, speed/acceleration/
time and abort conditions may be omitted. The control then automati-
cally uses internally stored statements for default values.

Movement
instruction

MOVE
MOVE_REL
REF_PNT

LINEAR
CIRCULAR
PTP

WITH
VFIX_PTP
VFIX

V
T

A
V
R
R_PTP

T
TFIX

AFIX

A
P

Kinematic
definition

Interpo-
lation
mode

Speed, acce-
leration, time

Movement statement

8−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

8.1.1 Movement instructions

The control knows the following movement instructions:
D MOVE
D MOVE_REL
D REF_PNT

MOVE

Syntax:

MOVE[kinematic][interpolation mode][additional info][abort condition]
 [TO]point string|VIA point string[TO point string]

The control interprets all position values programmed after MOVE as ab-
solute dimensions. The coordinate values refer to the zero point of the
world or joint coordinate system.

Example:

destination=(10,10)

MOVE destination

X

Y

10

0
0

10

destination

Within the movement instruction, additional information decides whe-
ther the robot approaches the programmed points exactly − i. e. within
the defined tolerance − or whether it only travels past the points − without
halt −. This information consists of VIA and TO for movements in abso-
lute dimensions with MOVE.

Electric Drives
and Controls

8−3Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

MOVE VIA ... (passing)

The robot travels past the positions without an intermediate halt.

Syntax:

MOVE VIA pos1,pos2,pos3

X

Y

pos1

pos2

pos3

MOVE TO ...

The robot travels to the positions successively with an intermediate halt.

The word TO can be omitted when programming the movement instruc-
tion. The control generates the instruction TO automatically.

Syntax:

MOVE TO pos1,pos2,pos3

X

Y

pos1

pos2

pos3

It is possible to link VIA and TO within a movement instruction:

8−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

MOVE VIA ... TO ...

The robot travels past position 1 without an intermediate halt and then
travels successively to the positions 2 and 3 with an intermediate halt.

Syntax:

MOVE VIA pos1 TO pos2,pos3

X

Y

pos1

pos2

pos3

MOVE_REL

Syntax:

MOVE_REL[kinematic_variable][interpolation mode][additional info][abort condition]
 ([EXACT]point string|APPROX point string[EXACT point string])

The control interprets all position information programmed after
MOVE_REL as incremental dimensions. The coordinate values in this
case represent distance values in the respective coordinate system and
refer to the current actual position of the robot.

Syntax:

destination=(10,10)MOVE_REL destination

X

Y

10

10

destination

Electric Drives
and Controls

8−5Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

For movements in incremental dimensions with MOVE_REL the words
APPROX and EXACT decide with respect to exact positioning or travel
past.

MOVE_REL APPROX ...

The robot travels past the positions defined in incremental dimensions
without an intermediate halt.

Syntax:

MOVE_REL APPROX dis1,dis2,dis3

X

Y

dis1

dis2

dis3

MOVE_REL EXACT ...

The robot travels to the positions defined in incremental dimensions suc-
cessively with an intermediate halt in each case.

The word EXACT can be omitted when programming the movement in-
struction. The control generates the instruction automatically.

Syntax:

MOVE_REL EXACT dis1,dis2,dis3

X

Y

dis1

dis2

dis3

It is possible to link APPROX and EXACT within the movement instruc-
tion.

8−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

MOVE_REL APPROX ... EXACT ...

The robot travels past the first position without an intermediate halt and
then travels successively to the next positions 2 and 3 with an interme-
diate halt in each case.

Syntax:

MOVE_REL APPROX dis1 EXACT dis2,dis3

X

Y

dis1

dis2

dis3

REF_PNT

Syntax:

REF_PNT[kinematic_variable](axis_number{||,})

REF_PNT is a special movement statement which is used for program-
med reference point travel of the axes without having to travel the axes to
the reference point after a system start-up. The machine axes which are
to travel simultaneously to their reference points are specified in brak-
kets after the REF_PNT statement.

The values in the bracket refer to the axis number of the respective kine-
matic, the kinematic itself can be specified before the bracket.

Example:

REF_PNT kin_1(1,2,3)

;;KINEMATICS=kin_2

REF_PNT(4,5)

REF_PNT kin_3(4,5)

Destination point designations

The designations of the points for position and orientation can be freely
selected, see section 4.4. It is thus possible to assign the names pallet1,
pallet2 ... to the pallet points, for example.

For simplicity’s sake, point information in absolute dimensions is desi-
gnated by ’pos’ on the following pages. e. g. MOVE pos.

Electric Drives
and Controls

8−7Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Point information in incremental dimensions is designated by ’dis’ (di-
stance information), e. g. MOVE_REL dis.

8.1.2 Kinematic definition

If the program controls more than one kinematic, it is necessary to spe-
cify in the movement statement which kinematic is to be moved.

Example:

MOVE sr6 TO corner

MOVE robot_2 VIA prepos TO home

. Only one kinematic definition must be made in a movement state-
ment.

If the kinematic is missing in the movement statement, the kinematic sto-
red in the operating system or the last selected kinematic in the program
is moved.

Example:

;;KINEMATICS=robot_2

MOVE VIA prepos TO home

The kinematic preselection is performed using the compiler statement:

;;KINEMATICS=kinematic name

The kinematic defined in this way is then valid for all subsequent move-
ment statements without kinematic definition. It continues to be valid un-
til it is overwritten by another kinematic preselection.

. The kinematic preselection refers to the following line, not to the
program sequence (subroutine call, jumps).

Kinematic names are defined using a compiler statement, see section
2.3.1.

8.1.3 Interpolation mode

The control must know on which path the robot must approach the next
position. In order to define this path, there are three interpolation modes:
D LINEAR (straight line in space)

8−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

D CIRCULAR (circular path in space)
D PTP (synchronous point to point) the path depends on the robot

design, synchronous means that all axes reach their programmed
destination point at the same time)

LINEAR interpolation mode

The robot travels to the destination point on a straight line. The straight
line is geometrically defined by two points. Since the control knows the
current position P1 of the robot, it is sufficient to specify a destination
point P2.

CIRCULAR interpolation mode

The robot travels to the destination point on a circular path in space. The
circle is geometrically defined by three points. In addition to the destina-
tion point PZ, it is thus also necessary to specify an intermediate point P2
so that the control can unambiguously calculate the circular path. The
point P1 is the last-approached point and known to the control. The inter-
mediate point P2 is a point on the arc , which is travelled by the robot.

PZ

. The orientation of the intermediate point (PZ) does not have any in-
fluence on the movement sequence.

Electric Drives
and Controls

8−9Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

PTP interpolation mode

PTP = from point to point.

The control calculates the movement of all axes so that they simulta-
neously start and end movement . This is generally also referred to as
synchronous PTP. This results in travel which is not further definded, de-
pendent on the lever ratio of the robot arms and the points P1 and P2.

It is sufficient to specify a destination point for the PTP procedure

Statement-specific interpolation mode

The interpolation mode is programmed in the movement statement if a
specific interpolation mode is to be valid for one movement statement
only.

The interpolation mode is contained in the movement instruction, di-
rectly following MOVE or MOVE_REL.

. There must be only one interpolation mode within a movement
function!

Example LINEAR
MOVE LINEAR TO pos1

MOVE_REL LINEAR APPROX dis1 EXACT dis2

X

Y pos1

dis1

dis2

8−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Example CIRCULAR

The point information, such as intermediate point pz or dz, end position
pos1 or dis1, required for CIRCULAR interpolation must be written in
brackets and separated by a comma.

Syntax:

MOVE CIRCULAR TO (pz,pos1)

MOVE_REL CIRCULAR EXACT (dz,dis1)

X

Y pos1

dz

dis1

pz

Example PTP
MOVE PTP TO pos1

MOVE_REL PTP EXACT dis1

Y pos1

dis1

X

. The control automatically selects PTP if no interpolation mode is
specified and if no global interpolation mode has been specified.

Electric Drives
and Controls

8−11Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Global interpolation mode

If an interpolation mode is to be valid for several movement statements,
it can be specified as a global interpolation mode.

The global interpolation mode is specified with the following compiler
statement.

Syntax:

;;INT ;Interpolation mode applies to all kinematics

;;KIN1.INT ;Interpolation mode applies to respective kinematic

The interpolation mode defined in this way then applies to all subsequent
movement statements which do not contain any specific interpolation
definitions.

Example
;;INT=LINEAR MOVE pos1 ;The robot travels to the position pos1 and the point
 ;defined via dis1 on a straight line in each case.

MOVE_REL dis1 MOVE CIRCULAR(pz,pos2) ;Travel to point pos2, on the other hand,
 ;takes place on a circular path.

The global interpolation mode remains valid until it is replaced by an-
other interpolation mode.

Example
;;KIN1.INT=LINEAR

MOVE pos1 ;The robot travels the axes of kinematic 1 to the positions pos1

MOVE pos2 ;and pos2 on a straight line in each case

;;KIN1.INT=CIRCULAR

MOVE (pz1,pos3) ;The positions pos3 and pos4 and all other positions are

MOVE (pz2,pos4) ;approached on a circular path after definition of CIRCULAR
 ;interpolation mode

. In case of a global definition of CIRCULAR interpolation, the point
values within the movement statement for which the interpolation
definition is to be valid must be point pairs.

. If several global interpolation modes are programmed, assignment
of the interpolation mode takes place in ascending line order and
not in accordance with the program sequence (subroutine, jumps
etc.).

8−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Example

The position pos2 is approached with PTP, although the compiler state-
ment ;;INT = PTP was equipped in the program run.

1

2

3

4

5

6

;; INT = LINEAR

MOVE pos1

JUMP mark1

;; INT = PTP

mark1:

MOVE pos2

Ascending
line order

Program sequence

8.1.4 Destinations

The robot always travels from its current position to the programmed de-
stination point. The path for this must be defined by the interpolation
mode, so that the control knows how it is to calculate the path to the desti-
nation point.

In the same way, the path must be defined unambiguously in geometric
terms. This is done by means of the point values. In the case of circular
interpolation, for example, it is necessary to define an auxiliary point in
addition to the destination point in order to clearly define the circular
path.

8.1.5 Speed, acceleration and time

In addition to informing the control of the position of the destination point
and the path, you must also tell how fast or in what time the robot should
travel to the destination point.

The control therefore requires information about the duration of the mo-
vement or the path speed of the robot.

A value can be entered for acceleration in order to determine how quickly
the robot is to reach this path speed.

Speed

The speed has different designations, units and input ranges, depending
on the path to be travelled by the robot.

Electric Drives
and Controls

8−13Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

If you do not program any values for the speed, the robot travels with
speed values which are internally stored in the control. Stored are 25
mm/s for path interpolation resp. 10 % of the maximum speed for syn-
chronous PTP interpolation.

The speed V_PTP is specified as a decimal factor of the maximum axis
speed for synchronous PTP interpolation. It is also possible to enter va-
lues in percent, e. g. V_PTP = 80 % is equivalent to V_PTP = 0.8.

Speeds for LINEAR and CIRCULAR

Designation V (override active)
VFIX (override not active)

Unit of measure mm/s

Input range 1 to 2000 mm/s (depending on ma-
chine parameter P102)

Power-on condition 25 mm/s

Speeds for PTP

Designation V_PTP (override active)
VFIX_PTP (override not active)

Unit of measure decimal factor

Input range 0.0001 to 9.9999
(0.01 % to 999.99 %)
(depending on machine parameter
P103)

Power-on condition (0.1)

Programming possibilities

The speed can be programmed as a
D global speed definition,
D statement-specific speed definition,
D statement-specific time definition,
D with and without speed override.

Global speed definition

If the path speed remains the same for the whole program or for a large
section, it is sensible to define the speed as a global speed.

The speed value remains valid until it is changed by a further global
speed definition.

8−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Example
V750 ;V = decimal expression. All subsequent
 ;movement functions with the interpolation modes LINEAR and
 ;CIRCULAR have the following speed value: V = 750 mm/s

MOVE LINEAR pos1

MOVE CIRCULAR (pz,pe)

V=750 ;The speed for linear approach to the points pos1

MOVE LINEAR pos1 ;and pos2 is V = 750 mm/s

MOVE LINEAR pos2

V=300

MOVE LINEAR place3 ;The points place3 and place4 and all other points are

MOVE LINEAR place4 ;approached at the speed V =300 mm/s

Statement-specific speed definition

If the path speed is to be valid for only movement statement, the speed is
accordingly defined as a statement-specific speed, i. e. with the move-
ment statement.

The speed designation and value assignment are part of the movement
function for which the speed is to be valid.

Programming takes place following the interpolation mode with the key
word WITH.

Example LINEAR:

MOVE_REL LINEAR WITH V=500 EXACT dis

Example PTP:

MOVE PTP WITH V_PTP=70% TO pos

. The global speed inputs do not have any influence on statement-
specific inputs.

Electric Drives
and Controls

8−15Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Speed override

Speed and time values can be changed with speed override VFACTOR.

The speed override is a factor by which the control automatically multi-
plies all speed definitions.

Time inputs are divided by the VFACTOR. The values calculated in this
way then apply to the subsequent movement functions.

. Inputs with VFIX and TFIX are not taken into account.

The factor relates to the defined speed or time values in the program.
The factor can also be specified in percent, e. g. VFACTOR = 180 % is
equivalent to VFACTOR = 1.8.

Speed override

Designation VFACTOR

Unit of measure %

Input range 0.01 to 999.99 % (depending on machine parameters
P23 and P119)

Power-on condition 1.0 (100 %)

. AFACTOR and VFACTOR are reset to 1.0 (100 %) with RESET and
by program abort.

The global Vfactor (P23) acts on all kinematics, the local VFACTOR
(P119) acts only on the respective kinematic.

Designation and value assignment form a separate statement.

Example
VFACTOR=180% ;The VFACTOR of 180% (= factor 1.8) acts
 ;on the path speed to the positions 1, 2,
 ;3 and 4. pos1 is approached with 180% of Vmax
 ;(power-on condition 10%, factor 1.8)

MOVE PTP TO pos1

V=200

MOVE LINEAR TO pos2 ;pos2 is approached with 360 mm/s

MOVE LINEAR WITH V=100 TO pos3 ;pos3 is approached with 180 mm/s

MOVE LINEAR WITH T=10 TO pos4 ;pos4 is approached in a time of 5.6 seconds
 ;(10 / 1.8 = 5.6)

8−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Acceleration

The control recognizes from the acceleration values how quickly the ro-
bot has to reach the speed defined for it.

. Acceleration values can be programmed only for LINEAR and CIR-
CULAR interpolation.

The designations, units of measure and input ranges are contained in
the following table.

Acceleration vor LINEAR and circular interpolation

Designation A (override possible)
AFIX (override not possible)

Unit of measure mm/s2

Input range 0.001 to 32000 mm/s2

Power-on condition 10 mm/s2

In the PTP method, the robot accelerates with the maximum values defi-
ned in the machine parameters. It is possible to change the acceleration
value with the AFACTOR.

Programming possibilities

In case of LINEAR and CIRCULAR interpolation, acceleration input is
possible as a
D global definition
D statement-specific definition
D acceleration override

The acceleration override is also active for PTP interpolation.

Global acceleration definition

Interpolation modes: LINEAR, CIRCULAR

If the acceleration value remains the same for the whole program or a
larger section of it, it is sensible to program a global acceleration value.

The designation and value assignments form a separate statement at
the beginning of the program or program section.

The acceleration value remains valid until it is replaced by another global
value.

Electric Drives
and Controls

8−17Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Example
A=30 ;All subsequent movement functions with the
 ;interpolation modes LINEAR and CIRCULAR have the
 ;value A=30 mm/s2 defined as acceleration

V=100 ;The acceleration until the path speed V=100
 ;is reached is A=30 mm/s2 when appproaching the points
 ;pos1 to pos3

MOVE CIRCULAR (pz,pos1)

MOVE LINEAR pos2

MOVE LINEAR pos3

A=15 ;The positions pos4, pos6 and all other positions with
 ;LINEAR and CIRCULAR interpolation have an acceleration
 ;value of A=15 mm/s2

MOVE LINEAR pos4

MOVE PTP pos5

MOVE LINEAR pos6

. pos5 is approached with PTP interpolation. The acceleration value
A = 15 mm/s2 is not valid here.

Statement-specific acceleration definition

The acceleration is defined as a local value if a path acceleration value is
to be active only with one movement instruction.

Acceleration definition

Designation A

Unit of measure mm/s2

Input range 0.001 to 32000

Power-on condition 10 mm/s2

. Local acceleration values are possible only for LINEAR and CIRCU-
LAR interpolation.

8−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

The designation and value assignments are part of the movement func-
tion, for which the acceleration is to be valid. Programming takes place
following the interpolation mode with the key word WITH.

Example LINEAR:

MOVE LINEAR WITH A=30 TO pos

Example CIRCULAR:

MOVE_REL CIRCULAR WITH AFIX=25 EXACT (dz,dis1)

. The global acceleration values do not have any influence on state-
ment-specific values.

It is possible to locally define the speed and acceleration together within
a movement function. The two values are separated by a comma when
programming. They may be entered in any order.

Example CIRCULAR:

MOVE_REL CIRCULAR WITH V=120, A=35 EXACT (dz,dis1)

Acceleration override

Acceleration values can be influenced once more with the acceleration
override AFACTOR. The acceleration override is a factor by which the
control automatically multiplies all acceleration inputs. The values calcu-
lated in this way then apply for all subsequent movement functions.

Example:

Programmed A = 300.00 mm/s2 and AFACTOR = 90 % results in an
active
Aactive = A * AFACTOR = 270 mm/s2

The acceleration override function is not active for programming with
AFIX .

Acceleration override

Designation AFACTOR

Unit of measure decimal factor

Input range 0.01 to 999.99 % (depending on machine para-
meter P22 and P118)

Power-on condition 100 %

The decimal factor relates to the defined acceleration values.

Electric Drives
and Controls

8−19Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

The factor can also be specified in %, i. e. AFACTOR = 60 % is equiva-
lent to AFACTOR = 0.6.

Designation and value assignments form a complete BAPS statement.

Example
AFACTOR=200% ;The AFACTOR of 200 % (=factor 2)
 ;acts on the path acceleration for
 ;the movement to the points pos2
 ;and pos3

V=200

MOVE PTP TO pos1

MOVE CIRCULAR TO (pz,pos2)

MOVE WITH A=80 TO pos3

MOVE LINEAR WITH V=100, AFIX=10 TO pos4 ;The point pos4 is approached with
 ;the fix acceleration value AFIX = 10
 ;[mm/s2]. The acceleration override
 ;does not have any influence here

In the same way as AFACTOR acts on the acceleration phase and can
be programmed, the DFACTOR is used analogously for the deceleration
phase of a movement. In this case also the BAPS word DFIX has to be
used instead of AFIX.

8−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

8.2 Time definition, indirect speed programming

If the robot must approach the next position within a certain time, it is pos-
sible to define a time T, resp. TFIX.

Time for LINEAR

Designation T (override active)
TFIX (override not active)

Unit of measure second

Input range 0.5 to 32000 s

. Time inputs are possible only on a statement-specific basis.

The time value is part of the movement function for which it is to be valid.

The robot travels in a straight line in incremental dimensions. It has been
allocated a time of 8 seconds for the distance dis1 to be covered.

Syntax:

MOVE_REL LINEAR WITH T=8 EXACT dis1

dis1

Electric Drives
and Controls

8−21Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

The robot successively travels to the positions pos1, pos2 and pos3 on a
straight line with an intermediate halt. It is allocated a time of 5 seconds
in each case to travel from position to position.

Syntax:

MOVE LINEAR WITH T=5 TO pos1,pos2,pos3

pos1

pos2

pos3

8−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

8.3 Statements influencing movement

In addition to the above described direct movement statements, there
are also the following statements which have an influence on the move-
ment sequences:
D synchronization statements SYNC, SYNCHRON, SYN-

CHRON_END
D acceleration, deceleration between movement statements (block

transitions) BLOCK_SLOPE, PROGR_SLOPE

8.3.1 Belt synchronization

The belt synchronization function allows the robot movement to be syn-
chronized with an assembly or conveyor belt with respect to position and
orientation.

It does not matter whether the belt travels forward or backward, changes
its speed or stops. This does not apply to belt_kind 2 and 3. The belt must
be a straight line. This line may be arbitrarily positioned in space, see
rho4 machine parameters. The belt movement is registered by a position
measuring system.

The statements SYNC, SYNCHRON and SYNCHRON_END are availa-
ble in BAPS for function programming.

Syntax:

SYNC belt variable[, variable] condition

SYNCHRON [kinematic name] belt variable

SYNCHRON_END [kinematic name] belt variable

The belt variable must be declared in the declaration part of the program,
see also section 4.7.1, and must be assigned to a kinematic, see also
rho4 machine paramters.

Example:

;Declaration of a belt variable

;several belts for one kinematic

sr6.belt: 501=belt1, 502=belt2

;same belt as belt1

screwdr.belt: 503=screw_belt

Electric Drives
and Controls

8−23Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

. Up to 16 belts can be declared . The belt names and belt numbers
must be different, even if several kinematics use the same measu-
ring system for a belt variable.
The movement on belts can only be synchronous that are also de-
clared for this kinematic.

The component names and axis names must be specified correspondin-
gly for the assigned belt.

Programming belt synchronozation

The belt variable, which is of the data type REAL, contains the counter
value of the belt measuring system. The belt variable can be interroga-
ted only via compare operations, such as >= and <=.

The belt variable can be used in the program with WAIT UNTIL, IF and
SYNC.

Example:

;belt variable in WAIT UNTIL

WAIT UNTIL belt_1>=6

The instruction SYNC sets the belt variable to zero, resp. to the reset va-
lue, see special function 28 in the manual Control functions. Zeroing can
take place dependent on a condition. The following example shows the
possibilities of how the SYNC instruction can be used.

Example belt variable and SYNC statement:

SYNC belt_1>=300 ;Zeroing takes place if belt_1>=300

SYNC belt_1, li_scr=1 ;Zeroing takes place dependent on a condition

Belt synchronization is switched on with the instruction SYNCHRON.
From now on, all programmed movements are synchronized with re-
spect to position and orientation.

. The instruction SYNCHRON should therefore directly follow the
statement SYNC. If this is not the case, a set value may result due to
a belt movement, which the control then attempts to compensate
for with the SYNCHRON statement. This may in turn result in a jerky
movement of the robot.

Synchronization is switched off with SYNCHRON_END.

Example:

SYNCHRON sr6 belt_1 ;Belt variable and synchronous statement

8−24 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

MOVE LINEAR TO pos_1

SYNCHRON_END belt_1

. Only LINEAR and CIRCULAR interpolation must be programmed
in the belt synchronization mode.

Program example
;;CONTROL = rho4

;;KINEMATICS: (1=robi_1,2=robi_2) ;Definition of the kinematic names

;;robi_1.JC_NAMES=a1,a2,a3,b1 ;B1 is a dummy for belt values

;;robi_1.WC_NAMES=k1,k2,k3,b_c1

;;robi_2.JC_NAMES=a1,a2,a3,b2 ;b2 is a dummy for belt values

;;robi_2.WC_NAMES=k1,k2,k3,b_c2

PROGRAM beltsyn

INPUT: 1=i1,2=i2

robi_2.POINT: start_pos

robi_1.belt: 501=belt1

robi_2.belt: 502=belt2

BEGIN

 SYNC belt1,e1=1

 SYNCHRON robi_1 belt1 ;Synchronization of kinematic robi_1
 ;with belt1

 MOVE robi_1 LINEAR TO robi_1.POS

 WAIT UNTIL belt1>=1000

 SYNCHRON_END robi_1 belt1

 SYNC belt2>=200

 SYNCHRON robi_2 belt2 ;Synchronization of kinematic robi_2
 ;with belt2

 MOVE robi_2 LINEAR TO start_pos

 WAIT UNTIL e2=1

 SYNCHRON_END robi_2 belt2

PROGRAM_END

Electric Drives
and Controls

8−25Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

8.3.2 Block transitions (slope mode)

Syntax:
BLOCK_SLOPE

PROGR_SLOPE

In the normal movement sequence, the controlled axes are accelerated
to the programmed speed with every MOVE statement, traversed at the
programmed speed and then decelerated again to V = 0 when the pro-
grammed position is reached. The speed change is referred to as the
SLOPE. The acceleration phase is thus known as the up-slope and the
deceleration phase as down-slope.

The slope mode can be activated on a kinematic-specific basis.

v [mm/s]

t [s]

UP-SLOPE

DOWN-SLOPE

General

If it is wished to execute several MOVE statements coherently without
changing the speed to V = 0 and accelerating to the programmed speed,
this can be done by using PROGR_SLOPE. Switch-back to block-by-
block acceleration and deceleration is possible with BLOCK_SLOPE.

If PROGR_SLOPE is activated, the block transitions are executed at a
constant required speed if no speed changes are programmed. Other-
wise, the required speed is changed in jump and/or ramp form.

SLOPE mode activation

The slope mode can be switched in the BAPS program. The BAPS stan-
dard functions BLOCK_SLOPE and PROGR_SLOPE are defined for
this purpose.

PROGR_SLOPE is switched off by activating BLOCK_SLOPE. The
slope function is then active block-by-block.

Robot acceleration control

The robot is accelerated at the start of every block in accordance with the
slope form and is then decelerated again correspondingly at the end.
This means: jump to slope point, then start with defined acceleration.

See also rho4 machine parameters P120 to P124.

8−26 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

PROGR_SLOPE

The robot is accelerated by means of the slope function at the start of a
coherent movement sequence and is decelerated again at the end. The
speed is kept constant at block transitions if no speed change is pro-
grammed.

The power-on condition is defined for each kinematic via machine para-
meter P120.

Programming of the slope mode is explained below in several BAPS pro-
gram examples and its effect on the movement sequence is shown in the
following diagrams.

Example 1
PROGRAM ex_1 ;(1)

BEGIN ;(2)

 ;;INT=LINEAR ;(3)

 V=800,A=1000 ;(4)

 MOVE VIA beg_point ;(5)Program slope not active, i.e. the robot is
 ;accelerated in each block with A=1000 mm/s2 and is
 ;again decelerated at the end of the block.

 MOVE VIA point_center ;(6)

 MOVE TO end_point ;(7)

 PROGR_SLOPE ;(8)Program slope is switched on

 MOVE VIA beg_point ;(9)

 MOVE VIA point_center ;(10)

 MOVE TO end_point ;(11)

 MOVE VIA RAMP_1 ;(12)

 MOVE VIA RAMP_2 ;(13)

 MOVE VIA beg_point ;(14)

 MOVE VIA point_center ;(15)

 MOVE TO end_point ;(16)

 BLOCK_SLOPE ;(17)

 HALT ;(18)

PROGRAM_END ;(19)

Electric Drives
and Controls

8−27Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Program slope mode is not active in the first part of the program, blocks 5
to 7, i. e. the robot is accelerated in each block with A=1000 mm/s2 and
is decelerated again at the end of the block, see figure 1.

Program slope is switched on in block 8. As a result, the robot is accele-
rated with A=1000 mm/s2 in block 9. The block transitions from 9 to 10
and from 10 to 11 are executed at constant speed.

The robot is decelerated with the programmed acceleration of
1000 mm/s2 at the end of block 11, see figure 2.

The deceleration operation is already initiated in the previous block
(block 10 figure 3) if the traversing distance in the MOVE TO block (block
11) is not sufficient to decelerate the robot by means of the slope func-
tion.

The speed is set to zero by way of a jump at the end von block 11 if the
sum of the distances from block 10 and block 11 is not sufficient as the
deceleration path.

In this case, the following message is issued during the runtime: decele-
ration distance is too short, block No.: 11.

The acceleration phase may take place over any number of blocks, e. g.
block 12 to 16, figure 3.

Figure 1
V [mm/s2]

t [s]

AFACTOR = 1.0

Block 5 Block 6 Block 7

Figure 2
V [mm/s2]

1000

t [s]

AFACTOR = 1.0

8−28 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Figure 3
V[mm/s2]

1000

t [s]

AFACTOR = 0.25

Changing acceleration and speed

Acceleration change (A, AFACTOR)

As before, a change in the acceleration value is effective only at the time
of block preparation; this is also true for any change of the AFACTOR
with the PHG2000.

Also refer to the rho4 PHG2000 software manual.

Speed changes (V, VFACTOR)

Speed changes programmed in BAPS, such as V = ... or
MOVE WITH V = ... act at the block transition.

. Changes of VFACTOR with the PHG2000, mode 11.4, become ac-
tive immediately.

All speed changes are implemented in accordance with the slope func-
tion if the required speed is higher than the slope point defined in ma-
chine parameter P105 or P106. All speed changes are performed as
jump below the slope point. If the programmed speed is not reached wit-
hin a MOVE TO block, acceleration takes place only up to the max. pos-
sible speed and is then followed by immediate deceleration again, see
example 2, block 14.

Example 2
PROGRAM ex_2 ;(1)

BEGIN ;(2)

 ;;INT=LINEAR ;(3)

 PROGR_SLOPE ;(4)

 A=1000 ;(5)

 MOVE WITH V=200 VIA p1 ;(6)

 MOVE WITH V=350 VIA p2 ;(7)

Electric Drives
and Controls

8−29Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

 MOVE WITH V=500 VIA p3 ;(8)

 V=600 ;(9)

 MOVE VIA p4,p5 ;(10)Program slope is switched on

 MOVE VIA p6 ;(11)

 V=400 ;(12)

 MOVE VIA p7 ;(13)

 MOVE WITH V=1000 TO p8 ;(14)

 HALT ;(15)

PROGRAM_END ;(16)

Change in deceleration (DFACTOR)

It is possible to influence the deceleration in the BAPS program by assi-
gning a corresponding value to the standard variable DFACTOR. Like
the AFACTOR, the DFACTOR is a percentage which refers to the cur-
rent deceleration of the respective block. A change in the deceleration
acts like a change in acceleration at the time of block preparation. The
DFACTOR can also be changed by means of PHG2000.

Abort conditions

Abort by external influence
An abort of a travel movement by external influence, e. g. reset, feed halt
or abort with MOVE UNTIL instruction takes place as before, subject to
the following restriction.

. If the remaining travel distance in the currently active block is not
sufficient to decelerate the robot by way of the slope function, the
speed V = 0 is defined as a jump function at the end point. Immedi-
ate deceleration without slope function takes place in the event of
an abort by Emergency stop.

Abort of a coherent movement in the BAPS program
A movement sequence (activated program slope) is interrupted by the
following BAPS instructions:
D WAIT
D PAUSE
D HALT
D BLOCK_SLOPE
D IF ... THEN ... ELSE
D REF_PNT
D WRITE

8−30 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

D READ
D if several outputs with strobe take place (INTEGER−outputs) at first

the control waits the preset strobe time (machine parameter P8) until
the next output can take place.

D also with alternate programming of travel blocks and e. g.INTEGER−
outputs, travel interruptions may occur, if the travel blocks are shorter
than the preset strobe time.

D several blocks without travel information, e. g. calculations, variable
assignments, setting output signals.

The number of possible blocks depends on the length of the preceding
travel blocks and the nature of the assignments or calculations perfor-
med.

Example 3
PROGRAM ex_3

;;INT=LINEAR

BEGIN

 V=800,A=1000

 PROGR_SLOPE ;Program slope is switched on

 MOVE VIA beg_point

 WAIT 1

 MOVE VIA point_center

 MOVE TO end_point

 WAIT 1.5

 MOVE VIA beg_point

 MOVE VIA point_center TO end_point

 BLOCK_SLOPE ;Block slope is switched on

 HALT

PROGRAM_END

. If program slope is active, the movement must be ended in a defi-
ned manner before the above mentioned statements by insertion
of a MOVE TO block. This initiates a controlled deceleration opera-
tion.

Electric Drives
and Controls

8−31Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

. The speed is set to 0 in a jump function in the event of an interrup-
tion after a MOVE VIA block.

Interpolation mode change-over

The global acceleration and deceleration behavior can be activated in-
dependently of the interpolation mode. Block transitions without any
change in the interpolation mode are performed as described in section
8.3.2.

Change-over between linear and circular interpolation
Block transitions are performed as described in section 8.3.2 for chan-
ges from linear to circular interpolation and vice versa.

Example 4
PROGRAM ex_4

;;INT=LINEAR

BEGIN

 V=800,A=1000

 PROGR_SLOPE

 MOVE VIA beg_point

 MOVE CIRCULAR VIA (int_point1,circular_end1)

 MOVE CIRCULAR TO (int_point2,circular_end2)

 MOVE TO pnt_center

 MOVE CIRCULAR TO (int_point3, circular_end3)

 HALT

PROGRAM_END

Change-over between path and PTP modes
The movement sequence must be ended by a MOVE TO block before a
change-over from path mode to PTP mode and vice versa so that a con-
trolled transition can be realized. If the change-over takes place during a
coherent movement, the speed is changed in a jump function. No con-
trolled acceleration takes place in the first block in the new interpolation
mode (i. e. jump to programmed speed). It is thus possible to generate a
transition without or with only a slight change of the axis speeds by clever
programming.

Example 5
PROGRAM ex_5

8−32 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

BEGIN

 PROGR_SLOPE

 V_PTP=1

 MOVE PTP TO beg_point

 MOVE LINEAR TO p1

 MOVE PTP VIA p2

 MOVE LINEAR VIA end_pnt

 V_PTP=0.5

 MOVE PTP TO end_pnt_1

 HALT

PROGRAM_END

Calling external subroutines

The transition to an external subroutine can take place within a coherent
movement without speed dip.

A precondition is that program slope is activated at the start of of the ex-
ternal subroutine with the BAPS statement PROGR_SLOPE before the
first travel block or that program slope is preset by machine parameter
P120.

Slope mode and exact-position signal output

The special functions 1 and 2 can be used fully for both program slope
and block slope modes.

Transgression of axis limit values

Transgressions of limit values of individual machine axes in path mode
cannot be excluded as a result of coordinate transformation. Only moni-
toring is possible during the program run.

This monitoring function triggers one of the two following error messa-
ges in the event of an error:
D interpolator stop, axis X
D Ax−Velocity exceeded, axis X

X is here the number of the corresponding machine axis

Electric Drives
and Controls

8−33Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

The maximum permitted axis acceleration values are defined as 1.5 ti-
mes the value of the machine parameter P103. The programmer is thus
made to change the program at the corresponding places. Automatic
speed adaptation is not possible, since this would contradict the demand
for constant path speed.

Test system

Since interrupt points can be set in the test system, only BLOCK_SLOPE
is active here, irrespective of the programmed slope mode.

Slope mode and machine parameters

The slope behavior is determined by the following machine parameters:
D slope acceleration PTP
D slope point, path mode
D power-on condition, slope mode
D SLOPE form

See rho4 machine parameters, parameter group P100.

8−34 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

8.3.3 Spatial passing

Programmed destination points can also be passed to generate a conti-
nuous and harmonious movement at block transitions. It is thus possible
to achieve an accelerated movement sequence and while treating the
robot mechanics with care.

Passing means to ensure a uninterrupted speed sequence with block
transitions by a defined deviation from the programmed path.

Spatial passing

BLOCK_SLOPE
Parameter P120 =0
premature start

PROGR_SLOPE
Parameter P120 =1
see description

PTP (R_PTP = 0,1) Linear (R = 100) PTP (R_PTP = 0,1)Linear (R = 100)

P 214 = 1
Path criterion
recommended for
cartesian structure

P 214 =0
Block criterion

P 214 =0
Block criterion

P 214 = 1
Path criterion
(for cartesian struc-
ture)

In general, the following applies to block slope
D The spatial deviation in the passing range is speed-dependent.
D The individual travel blocks are started by the set passing distances

too early.

In general, the following applies to program slope
D In a coherent movement sequence it is attempted to keep the speed

constant.

Electric Drives
and Controls

8−35Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Spatial passing with program slope

PTP passing with program slope
A distance in degrees or mm, from which passing takes place, can be
programmed for each axis referred to its end position. By means of these
distances a passing range around the destination point is defined.

The robot travels on a path which is generated by the control and ensu-
res that the individual axis speeds do not change in a jump function if the
working point enters this passing range during a travel movement. After
having left the passing range, the robot behaves in the same way as in
travel movements without programmed passing.

The distances belonging to each axis are stored in the machine parame-
ter data block. These can be changed in the user program by means of a
factor (R_PTP). The function is analog to a V_PTP change. When the
factor is programmed, it remains active until it is overwritten. All distan-
ces stored for the individual axes are influenced equally so that the pas-
sing ranges will be compressed or extended. An own passing range,
which can optimally be adapted to the respective requirements, can thus
be defined around each destination position.

The selected distances are decisive for the time in which the speed
change has to be executed at the block transitions. If a relatively small
passing range is defined, the differential speed of the successive move-
ments must be passed in a short time. The deviation from the initially pro-
grammed path, also without passing, is limited to a small range. If large
passing ranges are selected, the speed transition will be smoother, but
the deviation will take on a larger distance.

The transitions between programmed path and passing path are tan-
gential.

The following is to clearly show the continuous speed change with one
block transition. It is based on a Carthesian system with two axes, one in
X- and one in Y-direction. The slope mode is program slope. The passing
range in X- and Y-direction is defined via machine parameter P213. If tra-
velling is made without passing, a speed jump from +V to −V will take
place at the block transition for the Y-axis. When the passing is switched
on, the speed within the passing ranges will be changed continuously
from +V to −V. Soft block transitions will be the result.

8−36 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

. The generated passing paths depend on the speed.

A

B

C

Y

X

t

V

t

V

Movement

Speed sequence X−axis

Speed sequence Y−axis

P 213 for Y-axis

Movement sequence

Programmed path

No speed change in
the X−axis since no
change of direction

Linear speed change
of the Y−axis with
change of direction

Electric Drives
and Controls

8−37Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Path passing with program slope
In case of path passing, a space sphere is defined around each point to
be passed. The radius of this sphere is defined in the BAPS-user pro-
gram with the standard variable R. It is thus possible with the path pas-
sing to provide for each programmed space point its own passing range.
The original path is left between entry and exit from this sphere for the
sake of a harmonious speed sequence. The robot moves outside this
space sphere on the path it would have travelled without passing. For the
adjustment of the passing ranges optimal for the user, the same condi-
tions apply as for the PTP-passing.

A
C

B

R

Passing with change of interpolation mode
The passing with active program slope is also effective when changing
the interpolation modes. During handling and assembly works it may be
reasonable to pass points approached in PTP and from which on a linear
travel should take place, or vice versa. Before entering and after having
left the passing envelope, there will be no deviation from the initially pro-
grammed path. In this case it is not decisive whether travelling takes
place from PTP to linear or vice versa.

8−38 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Special cases
If the distances between the points to be passed are not sufficient to
meet the programmed passing criteria, the control will automatically re-
duce to the maximum possible passing range. No adaptations will have
to be made by the programmer for this purpose.

A
B

Overlapping passing range

Passing range generated
by the control

Programmed pas-
sing range

Travelled path

Explanation of the figure: Overlapping passing ranges are automatically
reduced by the control to achive the maximum possible passing range in
this case. It is shown by the continuous line.

Electric Drives
and Controls

8−39Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

Passing with block slope

PTP passing with block slope
Contrary to the program slope mode, in which a continuous speed se-
quence with equal time ratios is achieved when passing, the next move-
ment block is started earlier in the block slope mode, whereby time is
saved. From the distances specified in degrees or mm for each axis with
respect to their end position, a common time is determined at which the
subsequent movement block is started. Both blocks are then executed
parallel and the results are added. It is thus ensured that the work point of
the robot, after having left the passing range, reaches again the path tra-
velled initially without passing. To avoid a simultaneous activation of
more than two movement blocks, the earliest start point is automatically
limited by the control to the center of the previous movement. A started
movement block is ended until the center of the subsequent block.

The following example is to clearly show the travel behavior.

Basis is a Cartesian system with 3 axes, whereby at first the 3rd axis is to
travel from the working range upward, then the axes 1 and 2 travel to
then emerge again with axis 3 into the working range. Saved time: tb1 +
tb2.

P1

P2
P3

P4

Programmed path

Travelled path

Path sequence

X-axis

8−40 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

V

t

tb1 tb2

Speed sequence

Path passing with block slope

Path passing with the block slope mode acts, referred to the path, in prin-
ciple as PTP-passing with block slope.

Passing with change of interpolation mode

When the bock slope is active, no passing will take place when changing
the interpolation modes.

BAPS language elements

Programmed destination points can also be passed to generate a conti-
nuous and harmonious movement with block transitions. Passing
means to enxure a continuous speed sequence by a defined deviation
from the programmed path.

The spatial passing is influenced in the user program with the standard
variables R and R_PTP. The standard variables act kinematic-related.
For the linear interpolation an R as radius is used analog to V-program-
ming. Absolute values are programmed for R . The unit of R is defined by
the measuring system conversion factor. R_PTP acts as factor with PTP
interpolation analog to V_PTP. This factor can be programmed in real
terms or as percentual value. It is offset with the machine parameter
P213.

Example

MOVE-statement with R, resp. R_PTP

;;INT=LINEAR ;Default of interpolation mode

R=50 ;Global effect

MOVE LINEAR WITH R=20 VIA p1 ;Block-related

;;INT=PTP ;Default of interpolation mode

R_PTP=1.4 ;Global effect

Electric Drives
and Controls

8−41Bosch Rexroth AGRhoMotion1070072178 / 07

Movement statements

MOVE WITH R_PTP=1.4 VIA p2 ;Block-related

. If R = 0 or R_PTP = 0 is programmed, the spatial passing is switched
off.

Machine parameters

The function ’spatial passing’ is to be activated or deactivated via ma-
chine parameter options. This function is preset at the time of shipment
of the control and after a machine parameter backup.

At the program start the passing distances and factors set in parameter
P212 are used. With the BAPS standard variables described before, the
values stored in the user program can be overwritten. If passing is swit-
ched off, 0 is used in each case.

The parameter P212 can be used to define a passing range, without ha-
ving to program it explicitely in the BAPS program.

. We recommend to use 0 as default for parameter P212.

In parameter P213, the axis-specific passing distances or path distan-
ces are stored, dependent on parameter P214. The factor R_PTP refers
to these distances.

The path criterion is suitable above all for Cartesian structured kinema-
tics since the value specified here represents with PTP interpolation a
space distance. This path criterion acts with both the program and block
slopes.

Restrictions:

Points approached in circular interpolation, or from which a travel with
circular interpolation takes place, are not passed spatially since the path
part in the interpolation clock changes already due to interpolation. This
applies to both the program and block slopes.

8−42 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Movement statements

Notes:

Electric Drives
and Controls

9−1Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9 Write/read functions
The BAPS statements WRITE and READ are available for communica-
tion.

Syntax:
WRITE device names, variable [,variable]

READ device names, variable [,variable]

Communication takes place via the serial interfaces available on the
control.

The output device is addressed by the device name. This is assigned to
the hardware interface via machine parameters or via mode 9.1 with
PHG2000 via a device number. The assignment of device number and
interface connection is shown in the following table.

Assignment: Device No., device names, interfaces

Device No. 0 1 2 3 4

Device
name

V24_1 to V24_4
TTY
SER_1 to SER_4
WIN_1 to WIN_4

V24_1 to V24_4
TTY
SER_1 to SER_4
WIN_1 to WIN_4

PHG V24_1 to V24_4
TTY
SER_1 to SER_4
WIN_1 to WIN_4

V24_1 to V24_4
TTY
SER_1 to SER_4
WIN_1 to WIN_4

rho4.1 X31 X32 X35 X33 X34

rho4.0 V24_1/X31 V24_2/X32 PHG/X34 V24_3/X33 PHG/X34

. rho4.1: X31 and X35 cannot be used simultaneously. X33 and X34
 are optional.

9−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

9.1 Protocol selection for communication functions

Different communication protocols are available for communica-
tion.These can be selected via machine parameter setting or via mode
9.1 with PHG2000.

Protocol
No.

Protocol structure read
echo

1a
1b

< DATA > followed by < CR > < LF >
< DATA > followed by < CR > or < LF>

yes

2 < DATA > yes

3 < SOH > < STX > < DATA > < ETX >
followed by
< SOH > < STX > < CR > < LF > < ETX >

no

4 < SOH > < STX > < DATA > < ETX > no

5 < DATA > no

6 PHG protocol yes

7 rho1/2 compatible according to protocol No. 3 no

8 Data link layer acc. to Siemens protocol 3964/R no

1a = data input, 1b = data output

Electric Drives
and Controls

9−3Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9.2 BAPS instruction WRITE

The instruction WRITE is used to put out data from the control via the
specified interface.

As soon as the WRITE instruction is reached in the program run, the de-
sired variables, texts or other data are put out via the selected interface.

The output of the data takes place as ASCII character string, i. e. conver-
sion from internal format to ASCII format is performed.

9.2.1 Protocol 3964/R

As an option, the function READ / WRITE device is to pack or unpack
data of a BAPS program also into the protocol 3964/R backed-up in
block form.

The protocol 3964/R is set as protocol 8, analog to the other seven proto-
cols, under MODE 9.1. or under MODE 7.8.3 in the interface-dependent
subpoint 3, 4, 5 or 6.

The operating system then realizes the link layer for the data to be trans-
ferred in the protocol 3964/R, with establishment of the connection,
block backup, time monitorings, block repetitions etc.

Contrary to the protocols used so far, data are in any case transferred in
both directions when transferring data by the protocol. The data are furt-
hermore not converted for the transfer, since they are transferred in bi-
nary form. For this reason, some particularities have to be taken into
account in this respect.

Realization of the protocol driver

For the processing of protocol 3964/R, establishment of the connection,
data backup, time monitorings, possibly block repetitions, a driver task is
activated with this protocol for every BAPS interface during the runup of
the control.

It receives and acknowledges max. one data block, even if READ is still
active. It furthermore synchronizes the sending and receiving of data
blocks.

Contrary to READ / WRITE with the protocols used so far, which occupy
the interface only temporarily, the interface is definitely occupied by the
driver task in the case of protocol 3964/R. In this case it cannot be used
for other functions.

9−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

If no errors occur, the protocol 3964/R looks as follows:

Block transmitter Block receiver

Initial position Initial position

< STX >Establish-
ment of
connection

Data
transfer
phase

< DLE >

< 1. CHAR >

< n. CHAR >

< BCC >

< DLE >

< ETX >

< DLE >

With the positive acknowledgement on the block checksum <BCC>, the
connection is considered offline so that each data block requires an con-
nection establishment.

If the block receiver replies to the attempt of the connection establish-
ment with another character than <DLE> or if it does not reply within the
acknowledgement delay time (QVZ) of 550 ms, the block transmitter re-
peats the characters <STX> for the establishment of the connection
max. 5 times (= 6 attempts).

If the connection has been established, the block transmitter sends the
data, whereby a <DLE> contained in the data will be transferred twice.
The data block must not have more than a maximum of 138 characters,
without taking the doubling into account. The data are followed by the
characters <DLE> <ETX> as block end identifier and then by the block
check sum <BCC> as XOR link via all characters of the telegram, except
for the start control character <STX>.

During the transfer of the data, the block receiver expects further charac-
ters within the character delay time (ZVZ) of 220 ms until the reception of
<BCC>. Otherwise it will abort the reception, send the characters
<NAK> and switch then into the initial position.

Electric Drives
and Controls

9−5Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

After having sent <BCC>, the block transmitter expects an answer from
the block receiver within the acknowledgement delay time. If the block
receiver answers with another character than <DLE>, especially <NAK>
or not within the acknowledgement delay time (QVZ), the block transmit-
ter will repeat the transfer of the data blocks max. 5 times (= 6 attempts).

If both sides want to establish a connection at the same time, the side
without priority will be subordinated. The side with the priority starts with
the transfer of the data as described. Since the timeout times for this pro-
tocol are fix, see delay times, the priority for the case of conflict is set via
the output Timeout time. If the value −1 is set there, the driver operates
without priority. The sending priority is part of the interface parameters.

Integration into the BAPS program

Permitted is the reading and writing of the BAPS data types
D BINARY,
D INTEGER,
D REAL
D POINT,
D JC_POINT,
D CHAR,
D TEXT,
D one-dimensional arrays of the type BINARY, INTEGER, REAL,

POINT, JC_POINT and CHAR

The use of the type TEXT for the transfer of binary data is problematic for
some BAPS operations because of the special position of the NIL cha-
racter as end character, especially as the application protocol starts in
case of a 3964/R connection normally with two NIL characters. A 3964/R
useful data block is furthermore up to 128 characters (>80) long, plus a
maximum of 10 bytes for the telegram head of the application layer.

As only the link layer of protocol 3964/R is realized, the realization of the
application layer of the protocol has to take place in the BAPS program.
For the compilation of the BAPS-specific presentation of data into appli-
cation-specific presentations and vice versa it is recommended to write
corresponding subroutines, e. g. for the conversion of an INTEGER va-
lue into a word presentation as common in the PLC and vice versa.

9−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

Type Number (bytes) Presentation, value range

BINARY 1 0 or 1

CHAR 1 0 to 255

INTEGER 4 Byte order adjustable via options.
Normal: Byte of lowest value first.

REAL 4 IEEE format, byte order as for INTEGER

POINT 4 * number of
coordinates

Each coordinate as REAL, without separation sign

JC_POINT 4 * number of axes Each axis as REAL, without separation sign

TEXT 80 Each byte as CHAR

Arrays of the type

BINARY, CHAR, IN-
TEGER, REAL,
POINT, JC_POINT

Array size Each element as data type

In case of data of the types POINT and JC_POINT, belt coordinates are
also counted with the number.

WRITE device

With WRITE, the data are written into the output block in binary form wi-
thout conversion. The number of bytes depends on the BAPS data type.

If several expressions separated by a comma are programmed in a
WRITE instruction, the data are written succesively in an output block
and then the whole block backed-up with the protocol 3964/R is transfer-
red.

READ device

With READ, the same number of bytes is read type-dependent from the
reception block, just as with writing. If not all bytes have been read from
the reception block in one single READ cycle, the data are continuously
read with each further READ. Reading from a new reception will only
start when the reception block has been read completely. No block limit
must, however, be within a data type to be read. This would lead to a run-
time error ’READ protocol error’. Especially READ / WRITE device with
protocol 3964/R V1.2. Since the data are transferred binary, a check of
the read data values for values of 0 and 1 can only take place with varia-
bles of the type BINARY. In case of variables of the type REAL, or com-
ponents of the type POINT or JC_POINT, a FPU trap system error can
only be caught and converted into a runtime error ’prot.err while READ’.
It should therefore be checked within the BAPS program whether the
read data values are of a reasonable order.

Electric Drives
and Controls

9−7Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Special cases and restrictions

The overall execution time, e. g. for reading a data module of a PLC, will
mainly be determined for an error-free transfer at 9600 Baud by the ex-
ecution time for the formation and especially interpretation of the 3964/R
application layer in the BAPS program.

If a program is aborted, which has already read at least 1 byte of a recep-
tion block, the rest of the block will be deleted to permit a new positioning.
If the physical interface is not available for the runup or if it is occupied,
e. g. with the function ’Coupling to programming device’, the driver task
will not be initialized.

9−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

9.3 Interfaces

The data can be put out via the following interfaces:
D V24_1 to V24_4
D WIN_1 to WIN_4
D PHG
D TCP/IP

PHG V24_2 V24_3 V24_4

WRITE

maximum 80 charac-
ters

V24_1 WIN_1 WIN_2 WIN_3 WIN_4 TCP/IP

approx. 256 cha-
racters (protocol-
specific)

In order to identify the interfaces, you must enter their names in the pro-
gram after the WRITE instruction.

If no interface is specified, the control puts out the desired data to the
PHG2000.

Example
WRITE PHG, g ;The variable g is displayed at the PHG

WRITE V24_2, te ;The variable te is put out via interface V24_2
 ;e. g. at a printer

WRITE ’3’ ;The number 3 is displayed on the standard output device

. A comma must be entered after input of an interface name.

9.3.1 Transferred data

Constants and variables of the type
D BINARY
D INTEGER
D REAL
D POINT
D JC_POINT
D CHAR

Electric Drives
and Controls

9−9Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

D TEXT and
D one-dimensional arrays of the type BINARY, INTEGER, REAL,

POINT, JC_POINT, CHAR and TEXT can be transferred

When writing to the PHG2000, you can transfer a maximum of 80 cha-
racters per WRITE instruction. Transfer of a maximum of 120 charac-
ters per WRITE instruction is possible for the other interfaces.

A few special restrictions apply to the individual data types as regards
the scope of transferability:

BINARY Only values 0 and 1

INTEGER Integral numbers with a maximum of 10 digits in the
range between -2147483648 and +2147483647 can
be transferred.

REAL Decimal numbers in the range between −999999 and
+999999 can be transferred, minimum resolution
±0.00001. Transfer takes place as a floating-point
number after REAL-ASCII conversion with sign or
blank, 6 digits and a decimal point, whereby the posi-
tion of the later depends on the value.

POINT,
JC_POINT

The individual coordinate values of a position of the
type POINT or JC_POINT must lie within the limits of
the type REAL.

CHAR All ASCII characters in accordance with DIN 66003 are
transferred.

TEXT All ASCII characters except 0 can be transferred. Ho-
wever, no more than 80 characters may be transferred
in a WRITE instruction. In the case of text constants,
the text to be transferred must be placed in inverted
commas and be in one line.

Example
k=2

d=0.123

WRITE PHG,k,’.VALUE =’,d ;The folloowing display appears on the PHG: 2. value =
 ;0.12300

. If several variables or constants are to be transferred within a
WRITE instruction, these must be separated from each other by a
comma.

. The WRITE instruction generates additional outputs, depending
on the set protocol, see above.

9−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

9.4 BAPS instruction READ

The READ instruction is used to request the control to read variables
from an interface.

As soon as the READ instruction is reached in the program run, the con-
trol stops the movement sequence and waits until the data is present at
the desired interface.

The read-in variables can thus be used in the rest of the program.

9.4.1 Interfaces

The control can read in the variables via the following interfaces:
D PHG2000
D V24_1 to V24_4
D WIN_1 to WIN_4
D PLC

In order to identify the interface, the interface name must be entered in
the program after the READ.

If no interface is specified, the control expects data input from the
PHG2000.

Example
READ V24_1,g ;The interface V24_1 must provide the variable g

READ k ;The value of the variable k must be entered at the standard input
 ;device

. A comma must be entered after the interface name is put in.

. The waiting time until the program aborts with the error message
’interface error’ as a result of missing data can be set or deactiva-
ted by means of the interface presetting.

Electric Drives
and Controls

9−11Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Multiple use of serial interfaces

The operating system of the control rho4.1 provides more functions to
write data onto serial interfaces or to read them, than interfaces are pro-
vided on the hardware side.

These functions are:
D coupling to programming device, also Online functions
D print file
D WRITE/READ V24_1 to V24_4

Under mode 9.1 resp. mode 7.8.3, an assignment between the function
and the serial interface is made.

If for two or more functions the same serial interface is selected there, a
situation of conflict will occur if these functions use the interface simulta-
neously.

It has to be taken into account in this respect that some functions attempt
permanently to occupy an interface. These are the function ’coupling to
programming device’ and the WRITE/READ V24_x functions if the pro-
tocol 3964/R (8) has been set there.

Automatic reactions in a case of conflict

If any function (B) wants to use an interface which is already occupied by
another function (A), the robot operating software (RBS) lets wait func-
tion (B) until function (A) is finished.

Finish in case of WRITE V24_x means that a coherent WRITE statement
has been put out and in case of a READ that the reading of exactly one
variable is ended. This behavior also applies to the access to this func-
tion if several processes attempt to use one and the same function. If se-
veral processes wait for the assignment, the priority of the processes will
decide on the assignment by the priority order.

Special cases

The functions coupling and WRITE/READ V24_x with the protocol
3964/R do not enable the interfaces. A function (B) would wait endlessly
for the end of such a function (A).

WRITE/READ PHG, resp. V24_x with PHG protocol stops the operating
surface of the operating system, uses the interface for the PHG2000 and
makes sure at its end that the operating surface of the operating system
is continued.

9−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

Controlled avoiding of conflicts

Disable input signals are provided at the internal interface to specifically
avoid cases of conflicts:
D 28.6 :DIS_COUPL_RCI
D 28.7 :DIS_PRI_RCI
D 29.0 :DIS_SER_1_RCI
D 29.1 :DIS_SER_2_RCI
D 29.2 :DIS_SER_3_RCI
D 29.3 :DIS_SER_4_RCI

An abort takes place if these signals change from 0 to 1 when the func-
tion is active. CONDITION = interface error.

If these signals are on 1 when a function is actived, they will not be ex-
ecuted. CONDITION = interface occupied.

When these signals change from 1 to 0, the functions coupling and
READ V24_x with protocol 3964/R can be continued directly, the others
only when being called again. If the interface changes its transfer rate, it
will be reinitialized. If there are still characters in the read-in FIFO of the
interface, they will be deleted.

If these signals change to 0, the method described before will be imple-
mented.

The normal condition of these signals is 0. The disable signals need only
be served if cases of conflicts can occur and another conflict strategy
than the automatic one is desired or if conflicts cannot be solved automa-
tically.

Repositioning or switching over the interface

When repositioning or switching over the interface, an invalid character,
which can with the function READ device lead protocol-dependently to
the runtime error ’prot.err while READ’ or to the CONDITION ’Framing
error’, is normally read by the interface.

This can be avoided by the following sequence:
D disable function (A)
D reposition or switch over
D enable function (B)

Condition display

The message ’Disable coupling PG’ appears in the info function if the
function coupling is deactivated via its input signal.

Electric Drives
and Controls

9−13Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Example

The functions coupling and READ / WRITE V24_1 with protocol 3964/R
are to be operated on the same interface. It is assumed that a digital input
COUPL_IN_DI exists, e. g. a signal made available by the interface
change-over switch.

The PLC program then looks as follows:
DIS_COUPL_RCI=NOT COUPL_IN_DI

DIS_SER_1_RCI=COUPL_IN_DI

For some BAPS program parts it may he helpful to have a switch-over
signal available too, e. g.

PLC program:

OON_1_RCI=NOT COUPL_IN_DI

BAPS program:

INPUT BINARY: 1=V24_1_free

WAIT UNTIL V24_1_free=1

OR cond_V24_1=CONDITION(V24_1)

IF (cond_V24_1=−7) ;interface error

OR (cond_V24_1=−2) ;interface occupied

THEN WAIT UNTIL V24_1_free=1

Variant:

If required, the BAPS program switches On the interface via an OUT-
PUT.

BAPS program:

OUTPUT BINARY: 1=now_V24_1

INTEGER: cond_V24_1

now_V24_1=1

READ V24_1, variable

WRITE V24_1, variable

cond_V24_1=CONDITION(V24_1) ;for synchronization

now_V24_1=0

9−14 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

PLC program:

DIS_COUPL_RCI=OOFF_1_RCO

DIS_SER_1_RCI=NOT OOFF_1_RCO

For a controllable interface change-over switch, this signal will also be
put out at a digital output.

Hints for a realization

The switch-over via a PLC-automated switch-over presents the difficulty
that the PLC cannot recognize whether at the moment data, e. g. from a
coupling, are transferred on the interface. With the READ device, a syn-
chronization can be made via user signals, with the WRITE device it is
necessary to wait for the end of the transfer with the instruction CONDI-
TION device.

There is no return message that the switch-over procedure is finished.

The assignment of the functions coupling and READ / WRITE device for
the physical interface is an indirect machine parameter. The adjustment
can neither be read from the BAPS program nor from the PLC program,
so that it is necessary to definitely take the consideration of a case of
conflict in the programs into account.

When the function coupling is switched off, no Online status functions,
no Online test and no data transfer are possible. A coupling call on the
PG side (ROPS4) leads there to a ’Time-Out error’.

9.4.2 Transferred data

Variables of the type
D BINARY,
D INTEGER,
D REAL
D POINT,
D JC_POINT,
D CHAR,
D TEXT und
D one-dimensional arrays of the type BINARY, INTEGER, REAL,

POINT, JC_POINT, CHAR and TEXT can be read

Approx. 256 characters per READ statement can be transferred in this
case (protocol-dependent).

Electric Drives
and Controls

9−15Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

For the variable type INTEGER, the following restriction applies to the
transfer: Only integral numbers with a maximum of nine digits in the
range between −999999999 and +999999999 can be read.

. For the transfer scope of other variable types, the same restrictions
as for the WRITE instruction apply.

Messages

The control can put out the following messages:
D Interface erro: A WRITE/READ instruction has not been executed

within the time that can be set.
D prot.err while READ: The defined transfer format, resp. the computer-

internal protocol has not been observed in a READ instruction.
D prot.err while WRITE: A WRITE instruction cannot be not executed

since the defined transfer format, resp. the computer-internal proto-
col has not been observed.

9−16 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

9.5 Example READ/WRITE

You want to communicate the gripper position POSITION to your control
at a specific place in the program which is then to be approached.

For control reasons you want to present the current gripper position at
first at the PHG2000, block 38, and document it by means of your printer,
block 39. Your printer is connected to the interface V24_2.

Example:

MOVE_REL dis12,dis14 ;(35)

MOVE_REL CIRCULAR(cp7,cp8) ;(36)

act_pos=POS ;(37)

WRITE ’Position end of circle =’,act_pos ;(38)

WRITE V24_2,’Pos.end of circle=’,act_pos ;(39)

WRITE ’ ’ ;(40)

WRITE ’Enter the coordinates of the’ ;(41)

WRITE ’gripper position-position’ ;(42)

READ position ;(43)

MOVE LINEAR EXACT position ;(44)

WRITE V24_2, ’Coordinates of position’ ;(45)

WRITE V24_2, position ;(46)

With the program blocks 40, 41, 42 you write the request for the coordi-
nate output onto the standard output device.

In block 43, the control expects the input of the coordinate values of the
point POSITION via the keyboard of the standard output device.

You enter, for example, the position (200, 0, 120, −20, 40) for a 5-axis
robot.

. The input must be terminated with <Enter>.

The read-in point variable can now be approached, block 44, and be put
out to the printer, blocks 45, 46.

Electric Drives
and Controls

9−17Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Example READ PLC, WRITE PLC

Apart from the rho4 interface, the rho4 has an own data channel which is
able to transfer larger data amounts from or to the PLC or software PLC.
This data channel is addressed via the standard channel PLC.

The implicit declaration of the PLC channel of the type BNR_FILE ena-
bles to transfer variables and expressions of any type. The data are sent
as binaries, i.e. unformated. There is no ASCII conversion as it is usual
for DAT files or channels. For the realization of the data buffer to the PLC,
it is recommended to represent it through a record type variable.

. Since the name PLC is an implicitely declared BAPS standard vari-
able, there is no need to define it by the user. It can simply be used,
such as e. g. V24_1.
As it is the case for all BAPS standard variables, the user can create
a variable with the name PLC. It covers the standard variable PLC. It
can no longer be addressed.

For the communication with the PLC, the following must be observed:
D only one channel is supported for the communication (standard chan-

nel PLC).
D The number of the data module must be contained in the data buffer

to the PLC.
D A function module that transfers the data in the corresponding mo-

dule (depending on the number of the module in the data buffer) is
made available. If this function module is to be used, the length of the
buffer must be entered in the first component of the data buffer and
the number of the desired data component in the second component
(both entries as INTEGER).

9−18 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

Example: communication with the PLC

PROGRAM couplPLC

TYPE: ;Type arrangement of the data buffer to
;the PLC

tPLCdata=RECORD

 INTEGER: length ;Length of the data buffer

 INTEGER: PLC_dmno ;Number of the data module to the PLC

 INTEGER: PLCcode ;Function code from the PLC

 REAL: beltpos ;Current belt position

 POINT: actpos ;Current position of the robot in WC

 RECORD_END

tPLCdata: PLCdata ;Declaration of the data buffer

BELT: 501=belt_1

BEGIN

 PLCdata.length=sizeof(tPLCdata) ;Determine extent of the data buffer by
;means of the new standard function Sizeof

 PLCdata.PLC_dmno=1 ;Number of data module

 PLCdata.PLCcode=0 ;Initialize function code

 PLCdata.beltpos=belt_1 ;Current belt position

 PLCdata.actpos=POS ;Current actual position

 WRITE PLC,PLCdata ;Transfer to the PLC

 ;any instructions

 READ PLC, PLCdata ;get modified data from the PLC

 IF PLCdata.PLCcode=0 ;Check function code

 THEN WRITE ‘Everything OK!’

 ELSE

 BEGIN

 WRITE ‘Error!’

 HALT

 END

PROGRAM_END

Electric Drives
and Controls

9−19Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9.6 File operations

The following BAPS statements are available for the file operation:
D READ_BEGIN <file name>,[line number]
D READ <file name>, variable list
D WRITE <file name>, variable list
D END_OF_FILE <file name>
D WRITE_BEGIN <file name>
D WRITE_END <file name>
D CLOSE <file name>

File operations permit access to files of the type dat during the program
run.

The control reads values of these dat files and includes them in the pro-
gram run.

It is also possible to write arbitrary values from a BAPS program into a
dat file.

BAPS

10 12 14 16

69 66 99

52 33 27

200

96

0 180

5

0 300

27

96 200

Demo.dat
Re.dat

9−20 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

9.6.1 dat file

Numeric values for all variables valid in BAPS can be stored in files of the
type dat.

The dat file thus represents a value reservoir for program variables.

Creation of a .dat file

Like files of the type qll, dat files are also created and edited with an edi-
tor.

Example:

You wish to create a dat file to store values which you can subsequently
allocate to variables in a flexible way in the subsequent program run.

You thus create a dat file by inclusion of variables and comments.

Comments may be located at the line start or line end, but must always
begin with a semicolon ’;’.

If a comment is located at the start of a line, this means that the line is a
pure comment line − and no values may be written into this line.

NAME: values.dat

DATE: 29. 2. 88

10 20 30 40 ;HEIGHT

100 200 300 400 500 600 700 800 ;LENGTH

12.15 21.2 1.5 -160.7 -90 0 ;R_POS

Rules for .dat files

D Different data types may be included in the file in any order, e. g. IN-
TEGER, REAL, JC_POINT.

D The following characters are permitted for the presentation of num-
bers: 0 1 2 3 4 5 6 7 8 9. + − decimal numbers (REAL) are presented as
6-digit floating-point numbers. For the presentation of CHAR and
TEXT the characters ’ ’(space) to ’z’ are permitted.

D The decimal point symbol ’.’ is permitted only for numeric values of
the type REAL and thus also for the types POINT and JC_POINT.

D At least one space must always be placed between values to sepa-
rate them. Any number of spaces is possible.

D An automatic switching to the next line takes place at the line end. For
this reason, it is not necessary that there is a space after the last value
in a line.

D Line numbers are visible within the dat file only in Edit mode, i. e. no
line information for Print or Write.

Electric Drives
and Controls

9−21Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Access to a .dat file

If you wish to access one or more dat files, these must be declared as
variables of the type file.

9.6.2 .dat file declaration

Syntax:

FILE : file name [,file name]

Example:

FILE: values,erg,distances

INTEGER: number,i

TEXT: display,font

The file declaration must be contained in the declaration part of the pro-
gram.

The control can read or write values from several values of the type dat
within a BAPS program. Simultaneous reading out a file opened for wri-
ting is not possible.

9.6.3 File read statement

Syntax:

READ file name,variable[{,variable}]

The control is requested to read in values from a file of the type dat by the
instruction READ.

The declared file name of the dat file must be entered in the program af-
ter the READ instruction so that the control knows from where it is to ob-
tain the desired data.

This is followed, separated by a comma, by specification of the program
variable to which a value is to be assigned from the dat file by the READ
instruction.

The read instruction can be extended by allocation of a second or further
program variable from the same dat file.

Example:

READ values,number ;The control reads-in an integral value for the variable number
 ;from the file values.dat

9−22 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

READ erg,i,number ;The control reads-in a value from the file erg.dat both for
 ;the variable i and for number

9.6.4 Selection of a value within the dat file

The position of the invisible READ pointer is decisive in determining
which value is read within the dat file as a result of a READ instruction.

This pointer is used by the control so that it knows at which point in the file
it was last active as a result of a READ operation.

Whith the next READ instruction, the control automatically jumps to the
following value, reads this value and then postions the invisible READ
pointer.

In this way, the control reads from value to value and from line to line.

Example

Name: value.dat

Date: 29. 2. 88

10 20 30 40 ;HEIGHT

100 200 300 400 500 600 700 800 ;LENGTH

12.15 21.2 1.5 −160.7 -90 0 ;R_POS

. If the variable type from the program does not agree with the read
value in the dat file, the control puts out an error message. Leading
blanks and comments are ignored when reading variables of the
type BINARY, INTEGER, REAL, POINT and JC_POINT. When rea-
ding variables of the type CHAR or TEXT, the characters are read
directly from the position of the read pointer. If variables of the type
CHAR or TEXT are to be read from the beginning of a line, it is possi-
ble instead to read space characters included by an editor at the
end of the previous line. In this case, you should position the read
pointer by using the READ_BEGIN statement.

Electric Drives
and Controls

9−23Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9.6.5 READ_BEGIN selection of a specific line

Syntax:

READ_BEGIN file name [,line number]

The invisible READ pointer jumps before the start of a desired line as a
result of the BAPS instruction READ_BEGIN.

The next READ instruction has the effect that in the first value of this de-
sired line is read and assigned to a specific variable.

Example
READ_BEGIN values,7 ;The invisible pointer jumps to before line 7 in the file
 ;values.dat

READ_BEGIN values,(v+n) ;The invisible pointer jumps to a certain line in the file
 ;values.dat, which is got by the expression V+N

READ values,number ;The first value of the line (v+n) is read-in for the
 ;program variable number

. The BAPS instruction READ_BEGIN is a positioning instruction for
the invisible READ pointer. It does not result in reading a value.

. If no line number is specified, the control interprets this as a posi-
tioning instruction to the start of the file, and therefore positions
the invisible READ pointer before the start of line 1.

9.6.6 BAPS standard function END_OF_FILE

Syntax:

END_OF_FILE (file name)

This function permits interrogation of whether the file end has been re-
ached when reading a dat file, i. e. whether the invisible READ pointer is
pointing to the last value of the file.

Interrogation can take place by means of the BAPS instruction ’IF
THEN’.

9−24 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

Example:

IF END_OF_FILE (values)

THEN JUMP finished ;As soon as the last value in the file value.dat has been
 ;read, the control jumps to the jump label finished
 ;in the main program

. The dat file name must be placed in brackets.

9.6.7 BAPS instruction WRITE

Syntax:
WRITE file name,variable[{,variable}]

It is possible to write one or more values into a dat file by using the in-
struction WRITE and specifying a declared dat file.

If you wish to write several values in one line, this must be done with a
WRITE instruction. Each WRITE instruction opens a new line.

Example
FILE: values,erg

INTEGER: w

WRITE values,700 ;The value 700 is written in the file values.dat

WRITE erg,v,w-10 ;The value which the variable v has at the time of the WRITE
 ;instruction, is written in the file erg.dat along with the
 ;value yielded by the expression w-10

. A file opened for writing can be read only after a CLOSE instruction.

The WRITE instruction writes the desired value in the dat file in the line
which follows the current position of the invisible WRITE pointer.

Electric Drives
and Controls

9−25Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

. The file is overwritten as from this line! The previous content of this
and the following lines is thus deleted!

300 600 900

27.75

700

.

300.20 300.80

19.05

.

value.dat

Demo.qll

WRITE values, 700

The invisible WRITE pointer always identifies the position in the dat file at
which the program last executed a WRITE instruction.

A WRITE_BEGIN or WRITE_END instruction must be programmed
once before the first WRITE instruction.

9.6.8 WRITE_BEGIN selection of a specific line

Syntax:

WRITE_BEGIN file name[,line number]

The instruction WRITE_BEGIN results in a jump of the invisible WRITE
pointer to the start of a certain line and the file is opened for writing with
this statement.

As a result of this, the next WRITE instruction writes values from the
BAPS program into the desired line of the dat file. The previous content
of this line and all following ones is deleted.

Example:

WRITE_BEGIN values,(i+r) ;In the file values.dat, the invisible WRITE pointer
 ;jumps before the line whose line number is calculated
 ;from the expression I+R

WRITE values,f,100-r ;The values for the program variable f and the expression
 ;100-r are written into the line (i+r) of the file
 ;values.dat

. The file is deleted (overwritten) as from the line number specified in
the WRITE_BEGIN instruction.

9−26 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

A WRITE_BEGIN instruction must be programmed once before the first
WRITE instruction. This opens the file and positions the WRITE pointer
to the start of the file or to an arbitrary line number.

After this, no further WRITE_BEGIN instruction is normally necessary,
unless the dat file is to be deleted again from a certain line number.

. A new dat file is automatically created if no dat file with the file
name specified in the WRITE_BEGIN instruction exists yet.

9.6.9 BAPS instruction WRITE_END

Syntax:

WRITE_END file name

The BAPS instruction WRITE_END results in a jump by the invisible
WRITE pointer an the end of the dat file.

. If no dat-file with the file name indicated in the WRITE_END instruc-
tion exists, a new dat-file is then automatically created.

So it is not possible for a dat line to be overwritten with the next WRITE
instruction. The desired values are then placed at the end of the file.

It is the purpose of this instruction to complement arealdy existing dat
files.

Example:

WRITE_END, values ;The invisible WRITE pointer jumps to the end of the
 ;dat file

WRITE values, 700 ;The value 700 is written in a new line at the file end

Electric Drives
and Controls

9−27Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9.6.10 BAPS instruction CLOSE

Syntax:

CLOSE file name

An open file is closed with the close instruction.

Example:

CLOSE values ;The file is closed

9.6.11 Write, read BINARY files

The BAPS syntax is compared with the already realized ASCII file I/O
expanded by the keyword BNR_FILE. The read and write operations dif-
fer with respect to the syntax not from the instructions of the ASCII file
I/O. The disctinction between the ASCII file I/O used so far and the BI-
NARY files I/O is made in the file declaration. BINARY files have the file
extension .bnr.

ASCII files, characterised by the file extension .dat, are declared with the
keyword FILE and without type specification. Implicitely, the type CHAR
is assumed. A declaration with an explicite specification of the type
CHAR leads to the same result, e. g. FILE: dat_1 or FILE CHAR: dat_1.

There are two possibilities for the declaration of BINARY files. The first
one uses the new BAPS keyword BNR_FILE. A file declared in this way
may contain different BAPS data types in the BINARY format.

The second possibility requires only the already known BAPS keyword
FILE and additionally the data type of the data stored in the file. This kind
of declaration operates with files of one type only. This means that a file
may only contain data of one single BAPS data type. At the time of com-
pilation, all file operations are checked for type compatibility. File opera-
tions with bnr-files are executed faster than those with dat files since
there is no conversion of the data from ASCII to BINARY and vice versa.
The data are during reading furthermore accessed directly from the bnr
file and not via the block-oriented file management, which makes it, ho-
wever, necessary, that the file is available in the user memory in a se-
quential form. The sequentialization of the file is made in the
READ_BEGIN instruction which opens the file at the same time.

9−28 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

BAPS instructions of the binary file I/O
BNR_FILE: file_1,file_2 ;Declaration A, mixed bnr files

FILE JC_POINT: p_jc ;Declaration B, bnr files of one type only

FILE POINT: p_wc

FILE REAL: real_var

READ_BEGIN file_1 ;Read operations, positioning of the read pointer

READ_BEGIN file_1,byte_offset

READ file_1,@p1,@p2

WRITE_BEGIN file_1 ;Write operations, positioning of the write pointer

WRITE_BEGIN p_wc,byte_offset

WRITE_END file_1

WRITE file_1,@p1,@p2

CLOSE file_1 ;Close instruction

END_OF_FILE (file_1) ;End-of-file function

Read operations

bnr files are opened with the instruction READ_BEGIN and sequentiali-
zed in the user memory to ensure quick access. If a sequentialization is
for memory space reasons not possible, the process in which the
READ_BEGIN instruction is programmed will be aborted with the run-
time error message ’file sequ. failed’. One byte offset can be specified as
an option in the READ_BEGIN instruction, by means of which the inter-
nal read pointer can be positioned to an arbitrary byte address, e. g.
READ_BEGIN file_1, 80.

The first 80 bytes of the file are skipped in the example. The read opera-
tion starts with byte 81. If a byte offset is programmed, it must be ensured
that a reasonable value is at the corresponding place of the file which is
compatible with the following read instruction.

The next example shows the reading of point values from a .bnr file. The
file to be read is assumed to have a head of variable length followed by a
variably long data section. The head length is assumed to be stored as
an INTEGER value in the first 4 bytes of the file.

Electric Drives
and Controls

9−29Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

Example
PROGRAM l_bnr

BNR_FILE: f_pnt ;Mixed bnr file

INTEGER: head_length

POINT: p1

BEGIN

 READ_BEGIN f_pnt ;Read file head length from bnr file

 READ f_pnt,head_length

 READ_BEGIN f_pnt, head_length ;Position read pointer to the start of the data
 ;section

 label_1: ;Read loop

 READ f_pnt,p1 ;Read points from bnr file and approach all
 ;points until the end of file

 MOVE LINEAR VIA p1

 IF not END_OF_FILE(f_pnt)

 THEN JUMP label_1

 CLOSE f_pnt

PROGRAM_END

Write operations

bnr files can be generated or overwritten in the rho4. The new file is avai-
lable for further processing after having been closed by the BAPS in-
struction CLOSE. The file is not necessarily sequentialized at this time.
The sequentialization of all files is made with the interface signal ’reset’.
Similar to ASCII file I/O, files can be recreated or overwritten if they al-
ready exist. With the instruction WRITE_END it is possible to add further
data to the already existing ones. The WRITE_BEGIN instruction offers
the possibility to specify a byte offset. In the following WRITE instruc-
tions, the number of bytes specified in the byte offset will be maintained.
The remaining bytes of the file are overwritten with new data.

Data format

INTEGER and BINARY variables are stored as 4-byte integral values in
the complement of two. Logic 1 is presented as INTEGER value 1 and
logic 0 as INTEGER value 0. REAL values also occupy 4 bytes and are
stored in the 32-bit IEEE floating-point format. The types POINT and
JC_POINT consist of REAL values. The number depends on the axis
number (point components). Other BAPS types are not permitted. bnr
files do not contain a separation sign.

9−30 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

Restrictions

A file may not be opened simultaneously for writing by several processes
(subprocesses). The file can be opened again after having been closed
by a process.

. Files opened for writing cannot be opened for reading.

In a subprocess, e. g. PARALLEL or ALSO branch, it is not permitted to
simultaneously open a file which has already been opened for reading
by the associated main process or another subprocess. If a file has for
example simultaneously to be accessed for reading in two subproces-
ses, it has to be copied first. Subprocess 1 then works with bnr file 1 and
subprocess 2 with bnr file 2. The copy operation can take place on the
BAPS level by using special function 4 (COMMAND).

CLOSE instructions only act in the process (subprocess) in which also
the READ_BEGIN instruction has been programmed. When the process
is ended, the files opened by this process will be closed automatically if
no CLOSE instruction has been programmed.

Electric Drives
and Controls

9−31Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

9.7 Write/read in PLC and Windows applications

This chapter describes options which do not require any syntactical ex-
pansions of the BAPS language scope. These are for example expan-
sions concerning the communication with a PLC or with other Windows
applications.

Expansion of the standard channels

In addition to the available standard channels, e. g. V24_1 to V24_4, ad-
ditional standard channels are defined for a coupling with the PLC resp.
for the communication with Windows.

Communication with the PLC
Apart from rho4 interface, an own data channel is set up on the rho4.1
which is in a position to transfer larger data volumes from or to the PLC
resp. software PCL. This data channel is addressed via the standard
channel PLC which is in BAPS defined as follows:

Syntax:

PLC_channel=BNR_FILE:PLC.

The following applies to the above syntax:

PLC Name of the standard channel to the PLC. This name is no re-
served word.

The implicite declaration of the PLC channel of the type BNR_FILE ma-
kes it possible to transfer variables and expressions of any type. The
data are transmitted binary, i. e. unformatted; above all no ASCII conver-
sion takes place, as this is normally the case with dat files or channels.
For the realization of the data buffer to the PLC it is reasonable to present
the same by a record variable.

. Since the name PLC is an implicitely declared BAPS standard va-
riable, there is no need to define it by the user. It can simply be used,
such as e. g. V24_1. As it is the case with all BAPS standard varia-
bles, the user can in this case create, too, a variable with the name
PLC. This variable then covers the standard variable PLC. It can
thus no longer be addressed.

The following has to be observed concerning the communication with
the PLC:
D Only one channel is supported for communication, standard channel

PLC.
D The number of the data module must be contained in the data buffer

to the PLC.

9−32 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

D A function module is made available which transfers the data into the
corresponding data module, depending on the module number in the
data buffer. If this function module is to be used, the length of the buf-
fer itself must be entered into the first component of the data buffer
and the number of the desired data module into the second compo-
nent. Both specifications are of the type INTEGER.

Example communication with the PLC
PROGRAM couplPLC

TYPE: ;Type declaration of the data buffer to
 ;the PLC

tPLCdata=RECORD

 INTEGER: length ;Length of the data buffer

 INTEGER: PLC_dmno ;Number of the data module on the PLC

 INTEGER: PLCcode ;function code of the PLC

 REAL: beltpos ;Current belt position

 POINT: aktpos ;Current position of the robot in WC

 RECORD_END

tPLCdata: PLCdata ;Declaration of the data buffer

BELT: 501=belt_1

BEGIN

 PLCdata.length=sizeof (tPLCdata) ;Determine the size of the data buffer
 ;by means of the new standard function
 ;sizeof

 PLCdata.PLC_dmno=1 ;Number of the data module

 PLCdata.PLCcode=0 ;Initialization of function code

 PLCdata.beltpos=belt_1 ;Current belt position

 PLCdata.actpos=POS ;Current actual position

 WRITE PLC,PLCdata ;Transfer to PLC

 ;Arbitrary statements

 READ PLC, PLCdata ;Get changed data from the PLC

 IF PLCdata.PLCcode=0 ;Check function code

 THEN WRITE ‘Everything OK!’

 ELSE

Electric Drives
and Controls

9−33Bosch Rexroth AGRhoMotion1070072178 / 07

Write/read functions

 BEGIN

 WRITE ‘Error!’

 HALT

 END

PROGRAM_END

Communication with Windows applications

The communication between the rho4 real time core and Windows ap-
plications takes place via a TCP/IP connection. It does not matter in this
respect whether Windows applications and rho4 real time core run on
different computers or on a common hardware.

Standard channels are available in BAPS for this data exchange. The
user can make a communication with Windows application, using the
READ and WRITE statements of the BAPS language scope.

The following standard channels are available for this:
D Win_1
D Win_2
D Win_3
D Win_4

The implicite declaration of the Win channel of the type BNR_FILE ma-
kes it possible to transfer variables and expressions of any type. The
data are transmitted binary, i. e. unformatted; above all no ASCII conver-
sion takes place, as this is normally the case with dat files or channels.
For the realization of the data buffer to the PLC it is reasonable to present
the same by a record variable.

Example communication with Windows
PROGRAM couplWIN

TYPE: ;Type declaration of the data buffer

tWINdata=RECORD

 INTEGER: length ;Length of the data buffer

 INTEGER: WINcode ;External function code for
 ;Windows application

 REAL: beltpos ;Current belt position

 POINT: actpos ;Current position of the robot in WC

 RECORD_END

tWINdata: Windata ;Declaration of the data buffer

9−34 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Write/read functions

BELT: 501=belt_1

BEGIN

 WINdata.length=sizeof(WINdata) ;Determine the size of the data buffer by
 ;means of the new standard function
 ;sizeof

 WINdata.WINcode=0 ;Initialize function code

 WINdata.beltpos=belt_1 ;Current belt position

 Windata.actpos=POS ;Current actual position

 WRITE Win_1, WINdata ;Transfer to the Windows application

 ;Arbitrary statements

 READ Win_1, WINdata ;Get changed data from Windows application

 IF WINdata.WINcode=0 ;Check function code

 THEN WRITE ‘Everything OK!’

 ELSE

 BEGIN

 WRITE ‘Error!’

 HALT

 END

PROGRAM_END

Electric Drives
and Controls

10−1Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

10 BAPS3 keywords
. Hereafter, all currently reserved language symbols for the BAPS3

are listed. The listed language symbols must not be used as varia-
bles, file names or sub-program names in a BAPS3 program.

German English

@ @

ALLE EVERY

ANFANG BEGIN

ANSONSTEN DEFAULT

AUSGANG OUTPUT

BAND BELT

BINAER BINARY

BIS UNTIL

CIRCA APPROX

DANN THEN

DATEI FILE

DEF DEF

DEZ REAL

EINGANG INPUT

ENDE END

EXAKT EXACT

EXKLUSIV_ENDE EXCLUSIVE_END

EXKLUSIV EXCLUSIVE

EXTERN EXTERNAL

FAHRE MOVE

FALLS CASE

FALLS_ENDE CASE_END

FEHLER ERROR

FELD ARRAY

GANZ INTEGER

GLEICH EQUAL

GLOBAL PUBLIC

GRENZE_AUS LIMIT_OFF

HALT HALT

KONSTANTE CONST

10−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

German English

KREIS CIRCULAR

LESE READ

LESE_ANFANG READ_BEGIN

LINEAR LINEAR

MAL TIMES

MAX_ZEIT MAX_TIME

MIT WITH

MK_PUNKT JC_POINT

MOD MOD

NACH TO

NICHT NOT

ODER OR

PARALLEL PARALLEL

PARALLEL_ENDE PARALLEL_END

PAUSE PAUSE

PERMANENT PERMANENT

PRIO PRIO

PROGR_SLOPE PROGR_SLOPE

PROGRAMM_ENDE PROGRAM_END

PROGRAMM PROGRAM

PTP PTP

PUNKT POINT

REF_PKT REF_PNT

RHO_FKT RHO_FCT

RK_RAHMEN WC_FRAME

RSPRUNG RETURN

SATZ_SLOPE BLOCK_SLOPE

SCHLIESSE CLOSE

SCHREIBE WRITE

SCHREIBE_ANF WRITE_BEGIN

SCHREIBE_ENDE WRITE_END

SEMAPHOR SEMAPHORE

SONST ELSE

SOWIE ALSO

SPRUNG JUMP

SPZ_FKT SPC_FCT

Electric Drives
and Controls

10−3Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

German English

START START

STOP STOP

SYNC SYNC

SYNCHRON SYNCHRON

SYNCHRON_ENDE SYNCHRON_END

TEXT TEXT

TYP TYPE

UEBER VIA

UND AND

UNTERBRECHE BREAK

UP SUBROUTINE

UP_ENDE SUB_END

VAR VAR

VERBUND RECORD

VERBUND_ENDE RECORD_END

VERSCHIEBE MOVE_REL

WARTE WAIT

WDH REPEAT

WDH_ENDE REPEAT_END

WENN IF

WERKZEUG TOOL

WERT VALUE

ZEICHEN CHAR

ZUORDNE ASSIGN

10−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

BAPS3 Translator statements

German English

ACHSNAMEN JC_NAMES

DATEI_FEHLER FILE_ERROR

EINFUEGE INCLUDE

FEHLER ERROR

INT INT

KINEMATIK KINEMATICS

KOORDINATEN WC_NAMES

PROZESS_ART PROCESS_KIND

SER_EA_STOP SER_IO_STOP

STEUERUNG CONTROL

TESTINFO DEBUGINFO

WARNUNG WARNING

WERK_KOORD POSE

Electric Drives
and Controls

10−5Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

BAPS3 standard variables

German English

@IPOS @POS

@MPOS @MPOS

A A

AFAKTOR AFACTOR

AFEST AFIX

DFAKTOR DFACTOR

GRENZE_MAX LIMIT_MAX

GRENZE_MIN LIMIT_MIN

HBG MCP

IPOS POS

PHG PHG

R R

R_PTP R_PTP

RK_SYSTEM WC_SYSTEM

SER_1 SER_1

SER_2 SER_2

SER_3 SER_3

SER_4 SER_4

SPS PLC

T T

TFEST TFIX

TTY TTY

V V

V_PTP V_PTP

V24_1 V24_1

V24_2 V24_2

V24_3 V24_3

V24_4 V24_4

VFAKTOR VFACTOR

VFEST VFIX

WIN_1 WIN_1

WIN_2 WIN_2

WIN_3 WIN_3

WIN_4 WIN_4

10−6 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

BAPS3 standard functions

German English

ABS ABS

ATAN ATAN

BNR_DATEI BNR_FILE

CHR CHR

COS COS

DATEI_ENDE END_OF_FILE

GANZ_ZFELD INT_ASC

GANZTEIL TRUNC

GROESSE_VON SIZEOF

MK JC

ORD ORD

RK WC

RK_RECHNUNG WC_CALCULATION

RUNDUNG ROUND

SIN SIN

SPS_PROZESS PLC_PROCESS

SPS_ZEIT PLC_TIME

UNTERBRECHE BREAK

WURZEL SQRT

ZFELD_GANZ ASC_INT

ZUSTAND CONDITION

BAPS3 standard constants

German English

CLS CLS

RK_UR WC_UR

VERSION VERSION

Electric Drives
and Controls

10−7Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

General BAPS3 keyword list

German English

@ @

@IPOS @POS

@MPOS @MPOS

A A

ABS ABS

ACHSNAMEN JC_NAMES

AFAKTOR AFACTOR

AFEST AFIX

ALLE EVERY

ANFANG BEGIN

ANSONSTEN DEFAULT

ATAN ATAN

AUSGANG OUTPUT

BAND BELT

BINAER BINARY

BIS UNTIL

BNR_DATEI BNR_FILE

CHR CHR

CIRCA APPROX

CLS CLS

COS COS

DANN THEN

DATEI FILE

DATEI_FEHLER FILE_ERROR

DATEI_ENDE END_OF_FILE

DEF DEF

DEZ REAL

DFAKTOR DFACTOR

EINFUEGE INCLUDE

EINGANG INPUT

ENDE END

EXAKT EXACT

EXKLUSIV_ENDE EXCLUSIVE_END

EXKLUSIV EXCLUSIVE

EXTERN EXTERNAL

10−8 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

German English

FAHRE MOVE

FALLS CASE

FALLS_ENDE CASE_END

FEHLER ERROR

FELD ARRAY

GANZ INTEGER

GANZ_ZFELD INT_ASC

GANZTEIL TRUNC

GLEICH EQUAL

GLOBAL PUBLIC

GRENZE_AUS LIMIT_OFF

GRENZE_MAX LIMIT_MAX

GRENZE_MIN LIMIT_MIN

GROESSE_VON SIZEOF

HALT HALT

HBG MCP

INT INT

IPOS POS

KINEMATIK KINEMATICS

KONSTANTE CONST

KOORDINATEN WC_NAMES

KREIS CIRCULAR

LESE READ

LESE_ANFANG READ_BEGIN

LINEAR LINEAR

MAL TIMES

MAX_ZEIT MAX_TIME

MIT WITH

MK JC

MK_PUNKT JC_POINT

MOD MOD

NACH TO

NICHT NOT

ODER OR

ORD ORD

PARALLEL PARALLEL

Electric Drives
and Controls

10−9Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

German English

PARALLEL_ENDE PARALLEL_END

PAUSE PAUSE

PERMANENT PERMANENT

PHG PHG

PRIO PRIO

PROGR_SLOPE PROGR_SLOPE

PROGRAMM_ENDE PROGRAM_END

PROGRAMM PROGRAM

PROZESS_ART PROCESS_KIND

PTP PTP

PUNKT POINT

R R

R_PTP R_PTP

REF_PKT REF_PNT

RHO_FKT RHO_FCT

RK WC

RK_RAHMEN WC_FRAME

RK_RECHNUNG WC_CALCULATION

RK_SYSTEM WC_SYSTEM

RK_UR WC_UR

RSPRUNG RETURN

RUNDUNG ROUND

SATZ_SLOPE BLOCK_SLOPE

SCHLIESSE CLOSE

SCHREIBE WRITE

SCHREIBE_ANF WRITE_BEGIN

SCHREIBE_ENDE WRITE_END

SEMAPHOR SEMAPHORE

SER_1 SER_1

SER_2 SER_2

SER_3 SER_3

SER_4 SER_4

SER_EA_STOP SER_IO_STOP

SIN SIN

SONST ELSE

SOWIE ALSO

10−10 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

German English

SPRUNG JUMP

SPS PLC

SPS_PROZESS PLC_PROCESS

SPS_ZEIT PLC_TIME

SPZ_FKT SPC_FCT

START START

STOP STOP

STEUERUNG CONTROL

SYNC SYNC

SYNCHRON SYNCHRON

SYNCHRON_ENDE SYNCHRON_END

T T

TESTINFO DEBUGINFO

TEXT TEXT

TFEST TFIX

TTY TTY

TYP TYPE

UEBER VIA

UND AND

UNTERBRECHE BREAK

UP SUBROUTINE

UP_ENDE SUB_END

V V

V_PTP V_PTP

V24_1 V24_1

V24_2 V24_2

V24_3 V24_3

V24_4 V24_4

VAR VAR

VERBUND RECORD

VERBUND_ENDE RECORD_END

VERSCHIEBE MOVE_REL

VERSION VERSION

VFAKTOR VFACTOR

VFEST VFIX

WARNUNG WARNING

Electric Drives
and Controls

10−11Bosch Rexroth AGRhoMotion1070072178 / 07

BAPS3 keywords

German English

WARTE WAIT

WDH REPEAT

WDH_ENDE REPEAT_END

WENN IF

WERK_KOORD POSE

WERKZEUG TOOL

WERT VALUE

WIN_1 WIN_1

WIN_2 WIN_2

WIN_3 WIN_3

WIN_4 WIN_4

WURZEL SQRT

ZEICHEN CHAR

ZFELD_GANZ ASC_INT

ZUORDNE ASSIGN

ZUSTAND CONDITION

10−12 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

BAPS3 keywords

Notes:

Electric Drives
and Controls

A−1Bosch Rexroth AGRhoMotion1070072178 / 07

Appendix

A Appendix

A.1 Abbreviations

Abbreviation Meaning

BAPS3 Programming language; Bewegungs-
und Ablaufprogrammiersprache, Ver-
sion 3;
programming language

C: Hard disk drive

CAN Controler Area Network

DAC Digital-analog converter

EEPROM Electronically erasable programmable
read-only memory

EGB Elektrostatic sensitive components

ESD Electrostatic discharge

LF Line feed

MPP Machine parameter program

MSD Machine state display

PCL Memory-programmable control

PE Protective earth

PHG Hand-held programming unit

POS Actual position

PTP Point to point

RC Robot control

ROD Incremental encoder

RPM Rounds per minute

ROPS4 Robot programming system for rho4

TCP Tool center point

WC World coordinates

A−2 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Appendix

A.2 Index

A
A, 8−28
abort conditions, 8−29
actual position POS, 4−15
AFACTOR, 8−16, 8−18, 8−28
AFIX, 8−18
ARRAY, 4−4
array declaration, 4−18
array variable, 4−19
ASC_INTEGER, 7−22
ASSIGN, 7−19
assignment by components, 4−16
axis limit values, 8−32

B
belt channels, 4−23
belt synchronization, 8−22
BINARY, 5−12
BINARY files

data format, 9−29
read operations, 9−28
restrictions, 9−30
write operations, 9−29

block transitions, 8−25
BREAK, 5−21

C
CASE, 5−17
CASE_END, 5−17
channel number, 4−22
CIRCULAR, 2−4, 8−16
circular interpolation, 8−41
compiler, 2−2
compiler instruction

CONTROL, 2−4
DEBUGINFO, 2−8
INCLUDE, 2−4, 2−7
INT, 2−4
KINEMATIC, 2−4
PROCESS_KIND, 2−4, 2−8

components, 4−6

D
dat file, 9−20
data type

BINARY, 4−3
CHAR, 4−3
INTEGER, 4−2
JC_POINT, 4−3
POINT, 4−3
REAL, 4−2
TEXT, 4−4

declaration part, 2−10
DEF, 4−9
DEFAULT, 5−17
device, 9−1
DFACTOR, 8−19, 8−29
Documentation, 1−7

E
ELSE, 5−12
EMC Directive, 1−1
EMERGENCY−STOP devices, 1−5
EQUAL, 5−17
ESD

Electrostatic discharge, 1−6
grounding, 1−6
workplace, 1−6

ESD−sensitive components, 1−6
EXCLUSIVE, 4−5, 4−10, 5−20
EXCLUSIVE_END, 4−10, 5−20
EXTERNAL, 2−15, 4−11, 5−18
external main program, 2−14

F
FILE, 4−5, 9−21
file

ERR, 2−2
IRD, 2−2
PNT, 2−2
QLL, 2−2
SYM, 2−2

file operation
CLOSE, 9−19, 9−27
END_OF_FILE, 9−19, 9−23
READ, 9−19
READ_BEGIN, 9−19, 9−23
WRITE, 9−19, 9−24
WRITE_BEGIN, 9−19, 9−25
WRITE_END, 9−19, 9−26

Floppy disk drive, 1−7
functions, 7−1

G
GLOBAL, 4−10
global variables, 4−10
Grounding bracelet, 1−6

H
HALT, 5−8
Hard disk drive, 1−7

I
IF, 5−12

Electric Drives
and Controls

A−3Bosch Rexroth AGRhoMotion1070072178 / 07

Appendix

INPUT, 4−22
INTEGER_ASC, 7−20
interfaces, 9−1

messages, 9−15
PHG, 9−8
transferred data, 9−8
V24_1, 9−8

interpolation mode
CIRCULAR, 8−8
LINEAR, 8−8
PTP, 8−9

J
JC_NAMES, 2−4
JUMP, 5−10

K
KINEMATIC, 4−4
kinematic definition, 8−7

L
LIMIT_MAX, 2−6
LIMIT_MIN, 2−6
LIMIT_OFF, 2−6
LINEAR, 2−4, 8−16
logic operations

AND, 6−6
NOT, 6−6
OR, 6−6

Low−Voltage Directive, 1−1

M
main program structure, 2−10
MAX_TIME, 5−5
Modules sensitive to electrostatic discharge. See

ESD−sensitive components
modulo function, 6−3
MOVE, TO, VIA, 8−3
MOVE WITH, 8−28
MOVE_REL

APPROX, 8−5, 8−6
EXACT, 8−5

movement instructions
MOVE, 8−2
MOVE_REL, 8−4
REF_PNT, 8−6

O
OUTPUT, 4−22

P
parallel processes, 5−18
PARALLEL_END, 5−19
PAUSE, 5−8
PERMANENT, 2−4, 2−8
point file PNT, 4−13
program declaration, 2−13
program structure, 2−1
programming synchronization, 8−23
PTP, 2−4

Q
Qualified personnel, 1−2

R
R, 8−40
R_PTP, 8−40
READ, 9−10, 9−21
RECORD, 4−7
record instruction

BEGIN, 4−8
END, 4−8

REF_PNT, 2−6
Release, 1−8
REPEAT, 5−9
repeat loops, 2−23
REPEAT_END, 5−9
RHO4, 2−4
ROPS4, 2−2

S
Safety instructions, 1−4
Safety markings, 1−3
SEMAPHORE, 4−4, 4−10, 5−20
Semaphores, 5−20
Slope

BLOCK_SLOPE, 8−25
PROGR_SLOPE, 8−25

slope, machine parameters, 8−33
Spare parts, 1−6
special function, call, 7−27
special functions, specification, 7−27
speed

V, 8−14
V_PTP, 8−12

A−4 Electric Drives
and Controls

Bosch Rexroth AG RhoMotion 1070072178 / 07

Appendix

standard constants, 3−2
standard function

ABS, 7−4
ASC_INTEGER, 7−22
ASSIGN, 7−19
ATAN, 7−3
CHR, 7−5
CONDITION, 7−13
COS, 7−2
END_OF_FILE, 7−7
INTEGER_ASC, 7−20
JC, 7−6
ORD, 7−5
ROUND, 7−6
sizeof, 7−28
SQRT, 7−4
TRUNC, 7−5
WC, 7−6

Standard operation, 1−1
START, 5−19
statement part, 2−11
STOP, 5−19
subroutine

call, 2−18
declaration, 2−17
identification, 2−17
nesting, 2−21

SYNC, 8−23
SYNCHRON, 8−23
SYNCHRON_END, 8−23

T
T, 8−20
TCP/IP, 9−8
Test activities, 1−5
text assignment, 4−17
TFIX, 8−20
THEN, 5−12
TIMES, 5−9
TOOL, 2−6
Trademarks, 1−8
type definition part, 4−7

V
V, 8−28
value assignment, 4−14
value assignments, 6−1
variables, 4−1
VFACTOR, 8−28
VFAKTOR, 8−15

W
WAIT, 5−1
WAIT UNTIL, 5−2, 8−23

WC_FRAME, 4−2, 7−29
WC_NAMES, 2−4
WITH, 8−18
Workpiece coordinate system, 7−30

Bosch Rexroth AG
Electric Drives and Controls
P.O. Box 13 57
97803 Lohr, Germany
Bgm.-Dr.-Nebel-Str. 2
97816 Lohr, Germany
Phone +49 (0)93 52-40-50 60
Fax +49 (0)93 52-40-49 41
service.svc@boschrexroth.de
www.boschrexroth.com

Printed in Germany
DOK-RHO*4*-BAPSI*SOFTH-PR07-EN-P1070072178

	1 Safety Instructions
	1.1 Intended use
	1.2 Qualified personnel
	1.3 Safety markings on products
	1.4 Safety instructions in this manual
	1.5 Safety instructions for the described product
	1.6 Documentation, software release and trademarks

	2 Program structure
	2.1 General information
	2.2 Mode of compiler operation
	2.3 Compiler statements
	2.3.1 Kinematic definition
	2.3.2 WC name definition
	2.3.3 JC name definition
	2.3.4 Kinematic-related statements and data
	2.3.5 Inclusion of files
	2.3.6 Selectable extension within the include statement
	2.3.7 Process kind
	2.3.8 Debug information
	2.3.9 Compiler statement SER_IO_STOP

	2.4 Main program structure
	2.4.1 Declaration part
	2.4.2 Statement part
	2.4.3 Subroutine declaration

	2.5 Program declaration
	2.6 Main program call in the main program
	2.7 Subroutine declaration
	2.8 Program run

	3 Constants
	3.1 Constant declaration
	3.2 Standard constants

	4 Variables
	4.1 Data types
	4.1.1 Simple data types
	4.1.2 Structured data types
	4.1.3 User-defined types

	4.2 Declaration of variables
	4.3 Global variables
	4.4 Point variables
	4.4.1 Identification of point variables
	4.4.2 Points and point file pkt
	4.4.3 Complete value assignment
	4.4.4 Assignment of variables for individual components

	4.5 Text variables
	4.6 Array variables
	4.7 Channels
	4.7.1 Channel declaration
	4.7.2 Data types
	4.7.3 Programming

	5 Program control
	5.1 WAIT statement
	5.2 PAUSE statement
	5.3 HALT statement
	5.4 Repeat statement
	5.5 Jump statement
	5.6 IF-THEN statement
	5.7 CASE statement
	5.8 Parallel processes
	5.8.1 External processes
	5.8.2 Internal processes
	5.8.3 Semaphores

	5.9 BREAK

	6 Value assignments and combinations
	6.1 Value assignments
	6.2 Combinations
	6.2.1 Arithmetic expressions
	6.2.2 Comparison
	6.2.3 Logic operations

	7 Functions
	7.1 Sine function
	7.2 Cosine function
	7.3 Arc tangent function
	7.4 Square root function
	7.5 Absolute value
	7.6 TRUNC
	7.7 ORD
	7.8 CHR
	7.9 ROUND
	7.10 Coordinate transformation
	7.11 End of file
	7.12 Integration of PLC program modules
	7.12.1 Standard subroutines and/or standard functions
	7.12.2 Single activation of program modules
	7.12.3 Cyclical activation of program modules
	7.12.4 Extension of the START statement
	7.12.5 Extension of the STOP statement

	7.13 CONDITION interface, process, system signal, file
	7.14 ASSIGN
	7.15 Conversion routine INT_ASC
	7.16 Conversion routine ASC_INT
	7.17 Call of rho4 library functions
	7.18 rho4 special functions
	7.19 Standard function 'sizeof'
	7.20 Workpiece coordinate system
	7.20.1 General information
	7.20.2 Name determination of coordinate systems
	7.20.3 BAPS Syntax
	7.20.4 System file WCSYST.DAT
	7.20.5 WC system selection in a BAPS program
	7.20.6 Machine parameter P313: WCSYS-ROB assignment
	7.20.7 Library functions
	7.20.8 Workpiece coordinate system in a BAPS program
	7.20.9 Selection and function in manual mode
	7.20.10 Examples for special workpiece coordinates

	8 Movement statements
	8.1 Direct movement statements
	8.1.1 Movement instructions
	8.1.2 Kinematic definition
	8.1.3 Interpolation mode
	8.1.4 Destinations
	8.1.5 Speed, acceleration and time

	8.2 Time definition, indirect speed programming
	8.3 Statements influencing movement
	8.3.1 Belt synchronization
	8.3.2 Block transitions (slope mode)
	8.3.3 Spatial passing

	9 Write/read functions
	9.1 Protocol selection for communication functions
	9.2 BAPS instruction WRITE
	9.2.1 Protocol 3964/R

	9.3 Interfaces
	9.3.1 Transferred data

	9.4 BAPS instruction READ
	9.4.1 Interfaces
	9.4.2 Transferred data

	9.5 Example READ/WRITE
	9.6 File operations
	9.6.1 dat file
	9.6.2 .dat file declaration
	9.6.3 File read statement
	9.6.4 Selection of a value within the dat file
	9.6.5 READ_BEGIN selection of a specific line
	9.6.6 BAPS standard function END_OF_FILE
	9.6.7 BAPS instruction WRITE
	9.6.8 WRITE_BEGIN selection of a specific line
	9.6.9 BAPS instruction WRITE_END
	9.6.10 BAPS instruction CLOSE
	9.6.11 Write, read BINARY files

	9.7 Write/read in PLC and Windows applications

	10 BAPS3 keywords
	A Appendix
	A.1 Abbreviations
	A.2 Index

